Skip to main content

Community Repository Search Results

resource project Public Programs
Marbles Kids Museum will develop tools and strategies to train its staff, volunteers, and interns to engage infants, toddlers, and preschool children in activities and conversations that lay the foundation for critical early math skills. The staff capacity-building project will deepen the museum staff's understanding of early math skills, how to foster those skills, and why investment in early math is critical to long term success in school. With a content coach, the museum will research and develop early math resources, activities, and exhibit enhancements that engage children and their families. Additionally, the museum will seek to understand community needs related to early math learning, and create content for professional development video modules. The museum will modify the professional development modules to create caregiver workshops focused on fostering early math learning through everyday activities and play at home. Museum staff will share tools and lessons learned through a regional museum convening and at national conferences.
DATE: -
TEAM MEMBERS: Hardin Engelhardt
resource research Public Programs
The pilot and feasibility study will develop instructional workshops for an adult population of quilters to introduce them to computational thinking. By leveraging pre-existing social structures, skill sets, and engagement in quilting, the researchers hope to help participants develop computer science and computational thinking knowledge and skills. This poster was presented at the 2021 NSF AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Anne Sullivan Gillian Smith
resource evaluation Public Programs
The Wayne State University Math Corps is a mathematics enrichment and mentoring program that operates during summers and on Saturdays. The curriculum and the pedagogies in this informal learning program have documented success of supporting youths' mathematics learning as well as raising achievement levels in school. Through rigorous research and evaluation, this project seeked to analyze and understand the nature, extent, and reasons for Math Corps' success with youth learning in Detroit as well as the processes of program replication in three sites: Cleveland, OH; Utica, NY; and Philadelphia
DATE:
TEAM MEMBERS: Lindsay Fox Barbara Harris
resource research Public Programs
Making experiences and activities are rich with opportunities for mathematical reasoning that often go unrecognized by both participants and educators. Since 2015, we have been exploring this potential through the Math in the Making initiative. The work focuses particularly on children’s museums and science centers, many of which have developed maker spaces and programs over the last decade. In this article, we share insights from our most recent round of research. To begin, we consider the fundamental question of what it means to authentically integrate mathematics with making.
DATE:
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. The project's activities include regular forums of journalists and social scientists (Slack & Zoom), experimentation with different ways of presenting stats in news graphics and text, focus groups and experiments with audiences, and resources to support journalists beyond our team.
DATE:
TEAM MEMBERS: Patti Parson Jena Barchas-Lichtenstein Laura Santhanam Jim Hammerman Eric Hochberg
resource research Public Programs
New York City is a leader in Open Data initiatives, and has a large and diverse population. This project studies informal data science learning at workshops and trainings associated with NYC’s open data ecosystem. This poster was presented at the 2021 NSF AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Oded Nov Camillia Matuk Graham Dove
resource research Media and Technology
Numeracy is not a luxury: numbers constantly factor into our daily lives. Yet adults in the United States have lower numeracy than adults in most other developed nations. While formal statistical training is effective, few adults receive it – and schools are a major contributor to the inequity we see among U.S. adults. That leaves news well-poised as a source of informal learning, given that news is a domain where adults regularly encounter quantitative content. Our transdisciplinary team of journalists and social scientists propose a research agenda for thinking about math and the news. We
DATE:
TEAM MEMBERS: Jena Barchas-Lichtenstein John Voiklis Laura Santhanam Nsikan Akpan Shivani Ishwar Elizabeth Attaway Patti Parson John Fraser
resource research Media and Technology
The news arguably serves to inform the quantitative reasoning (QR) of news audiences. Before one can contemplate how well the news serves this function, we first need to determine how much QR typical news stories require from readers. This paper assesses the amount of quantitative content present in a wide array of media sources, and the types of QR required for audiences to make sense of the information presented. We build a corpus of 230 US news reports across four topic areas (health, science, economy, and politics) in February 2020. After classifying reports for QR required at both the
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Elizabeth Attaway Uduak G. Thomas Shivani Ishwar Patti Parson Laura Santhanam Isabella Isaacs-Thomas
resource project Public Programs
Many Black youth in both urban and rural areas lack engaging opportunities to learn mathematics in a manner that leads to full participation in STEM. The Young People’s Project (YPP), the Baltimore Algebra Project (BAP), and the Education for Liberation Network (EdLib) each have over two decades of experience working on this issue. In the city of Baltimore, where 90% of youth in poverty are Black, and only 5% of these students meet or exceed expectations in math, BAP, a youth led organization, develops and employs high school and college age youth to provide after-school tutoring in Algebra 1, and to advocate for a more just education for themselves and their peers. YPP works in urban or rural low income communities that span the country developing Math Literacy Worker programs that employ young people ages 14-22 to create spaces to help their younger peers learn math. Building on these deep and rich experiences, this Innovations in Development project studies how Black students see themselves as mathematicians in the context of paid peer-to-peer math teaching--a combined social, pedagogical, and economic strategy. Focusing primarily in Baltimore, the project studies how young people grow into new self-definitions through their work in informal, student-determined math learning spaces, structured collaboratively with adults who are experts in both mathematics and youth development. The project seeks to demonstrate the benefits of investing in young people as learners, teachers, and educational collaborators as part of a core strategy to improve math learning outcomes for all students.

The project uses a mixed methods approach to describe how mathematical identity develops over time in young people employed in a Youth-Directed Mathematics Collaboratory. 60 high school aged students with varying mathematical backgrounds (first in Baltimore and later in Boston) will learn how to develop peer- and near-peer led math activities with local young people in informal settings, after-school programs, camps, and community centers, reaching approximately 600 youth/children. The high school aged youth employed in this project will develop their own math skills and their own pedagogical skills through the already existing YPP and BAP structures, made up largely of peers and near-peers just like themselves. They will also participate in on-going conversations within the Collaboratory and with the community about the cultural significance of doing mathematics, which for YPP and BAP is a part of the ongoing Civil Rights/Human Rights movement. Mathematical identity will be studied along four dimensions: (a) students’ sequencing and interpretation of past mathematical experiences (autobiographical identity); (b) other people’s talk to them and their talk about themselves as learners, doers, and teachers of mathematics (discoursal identity); (c) the development of their own voices in descriptions and uses of mathematical knowledge and ideas (authorial identity); and (d) their acceptance or rejection of available selfhoods (socio-culturally available identity). Intended outcomes from the project include a clear description of how mathematical identity develops in paid peer-teaching contexts, and growing recognition from both local communities and policy-makers that young people have a key role to play, not only as learners, but also as teachers and as co-researchers of mathematics education.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Jay Gillen Maisha Moses Thomas Nikundiwe Naama Lewis Alice Cook
resource project Media and Technology
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Math is everywhere in the world, but youth may see math as disconnected from their everyday experiences and wonder how math is relevant to their lives. There is evidence that informal math done by children is highly effective, involving efficiency, flexibility, and socializing. Yet, more is needed to understand how educators can support math engagement outside of school, and the role these out-of-school experiences can play relative to the classroom and lifelong STEM learning. This Innovations and Development Project seeks to conduct research on a location-based mobile app for informal mathematics learning. This research takes place at 9 informal learning sites and involves iteratively designing an app in which learners can view and contribute to an interactive map of math walk “stops” at these sites. Learners will be able to select locations and watch short videos or view pictures with text that describe how mathematical principles are present in their surroundings. For example, learners could use the app to discover how a painting by a local Latino artist uses ratio and scale, or how a ramp in downtown was designed with a specific slope to accommodate wheelchairs. Research studies will examine the affordances of augmented reality (AR) overlays where learners can hold up the camera of their mobile device, and see mathematical representations (e.g., lines, squares) layered over real-world objects in their camera feed. Research studies will also examine the impact of having learners create their own math walk stops at local informal learning sites, uploading pictures, descriptions, and linking audio they narrate, where they make observations about how math appears in their surroundings and pose interesting questions about STEM ideas and connections they wonder about.

This project draws on research on informal math learning, problem-posing, and culturally-sustaining pedagogies to conduct cycles of participatory design-based research on technology-supported math walks. The research questions are: How does posing mathematical scenarios in community-imbedded math walks impact learners’ attitudes about mathematics? How can experiencing AR overlays on real world objects highlight mathematical principles and allow learners to see math in the world around them? How can learners and informal educators be engaged as disseminators of content they create and as reviewers of mathematical content created by others? To answer these questions, five studies will be conducted where learners create math walk stops: without technology (Study 1), with a prototype version of the app (Study 2), and with or without AR overlays (Study 3). Studies will also compare children's experiences receiving math walk stops vs. creating their own stops (Study 4) and explore learners reviewing math walk stops made by their peers (Study 5). Using a community ethnography approach with qualitative and quantitative process data of how youth engage with the app and with each other, the project will determine how the development of math interest can be facilitated, how learner-driven problem generation can be scaffolded, and under what circumstances app-based math walks are most effective. The results will contribute to research on the development of interest, problem-posing, informal mathematics learning, and digital supports for STEM learning such as AR. This project will promote innovation and have strategic impact through a digital infrastructure that could be scaled up to support STEM walks anywhere in the world, while also building a local STEM learning ecosystem among informal learning sites focused on informal mathematics. This project is a partnership between Southern Methodist University, a nonprofit, talkSTEM that facilitates the creation of community math walks, and 9 informal learning providers. The project will directly serve approximately 500 grades 4-8 learners and 30-60 informal educators. The project will build capacity at 9 informal learning sites, which serve hundreds of thousands of students per year in their programming.

This Innovations in Development project is supported by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Candace Walkington Anthony Petrosino Cathy Ringstaff koshi dhingra Elizabeth Stringer
resource research Informal/Formal Connections
Many studies have examined the impression that the general public has of science and how this can prevent girls from choosing science fields. Using an online questionnaire, we investigated whether the public perception of several academic fields was gender-biased in Japan. First, we found the gender-bias gap in public perceptions was largest in nursing and mechanical engineering. Second, people who have a low level of egalitarian attitudes toward gender roles perceived that nursing was suitable for women. Third, people who have a low level of egalitarian attitudes perceived that many STEM
DATE:
TEAM MEMBERS: Yuko Ikkatai Azusa Minamizaki Kei Kano Atsushi Inoue Euan McKay Hiromi M. Yokoyama
resource research Public Programs
We characterize the factors that determine who becomes an inventor in the United States, focusing on the role of inventive ability (“nature”) vs. environment (“nurture”). Using deidentified data on 1.2 million inventors from patent records linked to tax records, we first show that children’s chances of becoming inventors vary sharply with characteristics at birth, such as their race, gender, and parents’ socioeconomic class. For example, children from high-income (top 1%) families are ten times as likely to become inventors as those from below-median income families. These gaps persist even
DATE:
TEAM MEMBERS: Alex Bell Raj Chetty Xavier Jaravel Neviana Petkova John Van Reenen