Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE: -
TEAM MEMBERS: Robert Westervelt Carol Lynn Alpert Ray Ashoori Tina Brower-Thomas
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth
resource project Public Programs
Hopa Mountain, working in partnership with Montana State University (MSU), will develop innovative and coordinated opportunities for Montana youth to strengthen their STEM (Science, Technology, Engineering and Mathematics) skills and knowledge while preparing them for higher education and careers in health sciences. The overall project goal of HealthMakers is to support rural and tribal youth’s interest and exposure to careers in the sciences while giving them the skills and resources to play leadership roles in increasing healthy family practices in their homes and communities. HealthMakers will achieve meaningful impacts annually through four strategies: (1) Health-focused college preparation programs for 50 teens; (2) Summer academic enrichment programs for 20 teens; (3) Community-based science literacy events for 2,000 children and their families, and (4) Professional development for educators, community members, and parents. Hopa Mountain and MSU will engage youth, educators, community leaders, and parents in training opportunities through HealthMakers. Participants will take part in community-based workshops, college tours, and summer institutes led by MSU faculty, healthcare professionals, Hopa Mountain staff, and their peers. Through these strategic aims, HealthMakers will help create a stronger workforce and inspire students to pursue careers in the sciences.

PUBLIC HEALTH RELEVANCE:
HealthMakers will support the development of health-related outreach and college preparation programs and training resources to create a better-informed workforce for Montana and inspire students to pursue careers in the sciences. These strategic aims and deliverables benefiting rural and tribal families and children, will help create a stronger workforce and inspire students to pursue careers in the sciences. Working together, Hopa Mountain and Montana State University will support rural and tribal youth’s interest and exposure to careers in the health sciences while giving them the skills and resources to play leadership roles in increasing healthy family practices in their communities.
DATE: -
TEAM MEMBERS: Bonnie Sacchatello-Sawyer
resource project Public Programs
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.

PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
DATE: -
TEAM MEMBERS: Sheila Thomas
resource project Informal/Formal Connections
Cities are facing new demands as their urban populations rapidly grow. Smart City initiatives are being developed to address issues of mobility, infrastructure, security, and safety, while enhancing the quality of life of citizens. One-size-fits-all solutions are not viable. Instead, the diversity of a city's residents, including life experiences, cultural backgrounds, needs, and behaviors, must be taken into account to achieve transformative, citizen-centered solutions. Engineers, scientists, policy makers, entrepreneurs, and thought leaders must be prepared to tackle future Smart City challenges, and address knowledge barriers in understanding the needs of citizens across age, occupation, financial standing, disability, and technology savviness. This National Science Foundation Research Traineeship (NRT) award to the Arizona State University addresses this need by training the next generation of MS and PhD students for careers in Smart Cities-related fields. The project anticipates training thirty-eight (38) MS and PhD students, including twenty-four (24) funded trainees, from the following degree programs: Human and Social Dimensions of Science and Technology; Public Affairs; Computer Science; Civil, Environmental, and Sustainable Engineering; Mechanical & Aerospace Engineering; and Applied Engineering Programs. In addition to trainees, it is envisioned that over 300 other MS and PhD students in STEM disciplines will participate in opportunities made available through this traineeship. The knowledge and technologies developed from this project will contribute toward improving the quality of life for all of society through interdisciplinary, citizen-centered Smart City solutions.

An integrated education-research-practice model focused on the technological, societal, and environmental research aspects of citizen-centered solutions for Smart Cities will be employed to instill trainees with transdisciplinary skills and knowledge through cross-disciplinary courses; experience with leading collaborative, use-inspired research projects; applied learning through internships with partners and teaching opportunities; research experiences through service learning and leadership; and entrepreneurial education. Trainees will pursue research thrusts in Citizen-Centered Design; Smart City Infrastructure and Dynamics; and Socio-Environmental Practices and Policies. These thrusts are embedded in integrative priority application areas of Transportation and Accessibility; Safety, Security, and Risk Reduction; and Engagement and Education. Research efforts will significantly advance data-enabled citizen engagement; urban informatics; Internet-of-Things technologies; inclusion and accessibility; urban infrastructure; transportation systems; cybersecurity; swarm robotics; urban sustainability; quality of life and equity for citizens; hazards management and risk reduction; and societal concerns and ethics of emerging Smart City technologies. Focused efforts will be made to recruit underrepresented minorities, women, and individuals with disabilities, in order to tap underutilized talent, equip them to address the needs of their communities, and increase involvement of these groups in Smart Cities-related fields.

The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Ram Pendyala Cynthia Selin Ann McKenna Troy McDaniel Gail-Joon Ahn Sethuraman Panchanathan
resource project Professional Development, Conferences, and Networks
The Center for Advancing the Societal Impacts of Research (CASIR) will advance the rigor, relevance, and practice of broader impacts (BI) by (a) cultivating and strengthening the existent and emerging BI expert community; (b) building capacity of researchers and educators to enhance and articulate the broader impacts of their work; and (c) creating socio-technical infrastructure able to adapt to stakeholder needs as BI continues to grow and evolve. CASIR builds on the foundational work of the National Alliance for Broader Impacts and will advance the practice of translating scientific research for public understanding and meet the growing demand for innovative BI training and resources.

The Center will develop resources and provide professional development to diverse audiences across multiple institution types and settings, including research-intensive universities, minority-serving institutions, technical and community colleges, and primarily undergraduate institutions in the jurisdictions of the Established Program to Stimulate Competitive Research. CASIR will directly enhance BI capacity at the individual, departmental, institutional, and national levels. Particular focus will be given to individual researchers and institutions representing and serving traditionally under-served populations. In addition, CASIR will facilitate dialogue and collaboration around evidence-based approaches to enhancing, evaluating, and documenting research impacts. Overall, the work will be valuable to the community of researchers driving discovery, the community of professionals who provide BI support and collaboration with researchers, and the public which stands to benefit from research and education projects that are well-designed and executed in a way that enhances their broader impacts.

NSF-wide support for this Center augments the Foundation's current efforts to educate research communities about the importance of the broader impacts criterion in the review process and to communicate the societal benefits of fundamental science and engineering research. CASIR's emphasis on documentation, evidence, and best practices will support an evidence-building approach to investing in discovery and innovation.

This award is co-funded by the Office of Integrative Activities (OIA) and the following Directorates: Biological Sciences (BIO), Computer and Information Science and Engineering (CISE), Education and Human Resources (EHR), Engineering (ENG), Geosciences (GEO), Mathematical and Physical Sciences (MPS), and Social, Behavioral, and Economic Sciences (SBE).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the State of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

The potential insights this research could garner on intersectionality between formal and informal STEM learning are substantial. As a consequence, this project is co-funded by the Advancing Informal STEM Learning (AISL) and Discovery Research K-12 (DRK-12) Programs. The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Likewise, the Discovery Research-K12 Program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Informal STEM educational activities have proliferated widely in the US over the last 20 years. Additional research will further validate the long-term benefits of this mode of learning. Thus, elaborating the multitude of variables in informal learning and how those variables can be used for individual learning is yet to be defined for the circumstances of the learners. Thus, the primary objective of this work is to produce robust and detailed evidence to help shape both practice and policy for informal STEM learning in a broad array of common circumstances such as rural, urban, varying economic situations, and unique characteristics and cultures of citizen groups. Rather than pursuing a universal model of informal learning, the principal investigator will develop a series of comprehensive models that will support learning in informal environments for various demographic groups. The research will undertake a longitudinal mixed-methods approach of Out of School Time/informal STEM experiences over a five-year time span of data collection for youth ages 9-19 in urban, suburban, town, and rural communities. The evidence base will include data on youth experiences of informal STEM, factors that exert an influence on participation in informal STEM, the impact of participation on choices about educational pathways and careers, and preferences for particular types of learning activities. The quantitative data will include youth surveys, program details (e.g. duration of program, length of each program session, youth/facilitator ratio, etc.), and demographics. The qualitative data will include on-site informal interviews with youth and facilitators, and program documentation. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This specific project will advance new knowledge about the nature of and functions for rural libraries as informal STEM learning environments. Research will identify the social contexts and relational capabilities of libraries to acquire new scientific knowledge that exists externally and to integrate it into community knowledge-building and forums. The research outcomes should lead to actionable strategies for library and science communication practitioners about who and how to influence public engagement in citizen science drought monitoring. Furthermore, collaborations with these rural libraries will lead to new resources for rural communities and informal STEM education. This project will focus on the design, development, and evaluation of informal science education programs and educational media for use in rural libraries in drought prone areas of the Great Plains. The target audiences include public librarians in rural communities of Oklahoma, Nebraska, and Colorado, as well as the general public (adults and children) they serve. The project goals are to leverage the professional skills and community knowledge of rural librarians to support local drought monitoring networks. The model prepares librarians to introduce citizen science processes and practices within the context of community dialogue and deliberation about drought. In collaboration with partners at the Community Collaborative for Rain, Hail, and Snow (CoCoRaHS), and the National Drought Mitigation Center (NDMC), the project will increase public participation in citizen science and improve the communication of science-based knowledge about drought. The project deliverables include: (1) a professional development workshop series for rural librarians, (2) a drought infographic booklet and poster series, and (3) co-designed library programs for rural public audiences. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Website- http://www.spottyrain.org/
DATE: -
TEAM MEMBERS: Nicole Colston Tutaleni Asino
resource project Exhibitions
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The Designing Our Tomorrow project will develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. The project seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices. The project focuses on girls aged 9-14 and their families and is co-developed with culturally responsive strategies to ensure the inclusion and influence of families from Latino communities. The project will conduct research resulting in theory-based measures of engineering proficiencies within an exhibit context and an exhibit facilitation model for the topic area of engineering. Based on the research, the project will develop an engineering design challenge framework for developing design challenges within an exhibit context. As the context for research, the project will develop a bilingual English/Spanish 2,000-square foot traveling exhibition designed to engage youth and families in engineering design challenges that advance their engineering proficiencies from beginner to more informed, supported by professional development modules and a host-site training workshop introducing strategies for facilitating family engineering experiences within a traveling exhibition. The project is a collaboration of Oregon Museum of Science and Industry with the Biomimicry Institute, Adelante Mujeres, and the Fleet Science Center.

Designing Our Tomorrow builds on a theory-based engineering teaching framework and several previous NSF-funded informal education projects to engage families in compelling design challenges presented through the lens of sustainable design exemplified by biomimicry. Through culturally-responsive co-development and research strategies to include members of Latino communities and provide challenges that highlight the altruistic, creative, personally relevant, and collaborative aspects of engineering, the Designing Our Tomorrow exhibition showcases engineering as an appealing career option for women and helps families support each other's engineering proficiencies. To better understand and promote engineering learning in an ISE setting, the project will conduct two research studies to inform and iteratively develop effective strategies. In the first study, measurement development will build on prior research and practice to design credible and reliable measures of engineering proficiency, awareness, and collaboration, as well as protocols for use in exhibit development and the study of facilitation at engineering exhibits, and future research. The second study will explore the effects of facilitation on the experience outcomes.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Research in Service to Practice project examines how informal place-based collaborative learning can support local communities' planning processes related to current environmental changes. As a part of this study workshops will be conducted in 8 communities that have a range of planning mandates based on recent extreme environmental changes such as drought/wildfires, flooding, invasive species, or loss of native wildlife. Place-based adaptation workshops will be designed to be locally relevant and empower people to learn and act on their newly acquired understandings. Local community collective actions may include a range of decisions (e.g., infrastructure changes such as building defenses against sea level rise in coastal communities or improving the quality of roads to withstand higher temperatures.) Collective action may also lead to community wide behavioral changes such as individuals using less water or farmers planting different crops. The study will focus on the efficacy of the methods used in 8 workshops in communities throughout the country. Research objectives include: 1) identifying experts' belief about the most critical components of successful workshops; 2) Understanding of prior workshop outcomes and 3) test hypothesized effective practices and understand how learning takes place and collective action does or does not take place. The project addresses key AISL solicitation priorities including strategic impact on the field of informal STEM learning, advancing collaboration, and building professional capacity. It engages both public and professional audiences as described in the solicitation. Public audiences include stakeholders in each of the 8 communities such as community environmental groups, NGOs, businesses, landowners, and local government planners. Professional audiences include the workshop scientists and facilitators who will be trained in the experimental workshop approach. The project builds upon and expands the existing AISL portfolio of science communication projects such as science cafes, science festivals, science media, and library based projects. This is a collaborative project of EcoAdapt and Virginia Tech with participants from the National Parks Conservation Association, the Desert Research Institute, and the Wildlife Conservation Society and others. The research will progress through two phases. Phase 1 is designed to identify consensus-based effective practices for promoting learning and action in adaptation workshops. It includes a Delphi study to synthesize beliefs about effective practices held by experienced workshop facilitators across the United States. Phase 2 includes iterative design and research of eight adaptation workshops in various communities with a range of planning mandates and recent extreme weather experience. By iteratively revising the workshop design, the study will elucidate how different workshop components influence participant learning, individual behavioral intentions, and subsequent efforts toward collective action. The overall research design will examine the relationships of pedagogical and collaborative techniques to learner outcomes and collective action. Many of these lessons are likely relevant to other collaborative informal science learning contexts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marc Stern Lara Hansen
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will develop a national infrastructure of state and regional partnerships to scale up The Franklin Institute's proven model of Leap into Science, an outreach program that builds the capacity of children (ages 3-10) and families from underserved communities to participate in science where they live. Leap into Science combines children's science-themed books with hands-on science activities to promote life-long interest and knowledge of science, and does so through partnerships with informal educators at libraries, museums, and other out-of-school time providers. Already field-tested and implemented in 12 cities, Leap into Science will be expanded to 90 new rural and urban communities in 15 states, and it is estimated that this expansion will reach more than 500,000 children and adults as well as 2,700 informal educators over four years. The inclusion of marginalized rural communities will provide new opportunities to evaluate and adapt the program to the unique assets and needs of rural families and communities.

The project will include evaluation and learning research activities. Evaluation will focus on: 1) the formative issues that may arise and modifications that may enhance implementation; and 2) the overall effectiveness and impact of the Leap into Science program as it is scaled across more sites and partners. Learning research will be used to investigate questions organized around how family science interest emerges and develops among 36 participating families across six sites (3 rural, 3 urban). Qualitative methods, including data synthesis and cross-case analysis using constant comparison, will be used to develop multiple case studies that provide insights into the processes and outcomes of interest development as families engage with Leap into Science and a conceptual framework that guides future research. This project involves a partnership between The Franklin Institute (Philadelphia, PA), the National Girls Collaborative Project (Seattle, WA), Education Development Center (Waltham, MA), and the Institute for Learning Innovation (Corvallis, OR).
DATE: -
TEAM MEMBERS: Darryl Williams Karen Peterson Lynn Dierking Tara Cox Julia Skolnik Scott Pattison