Skip to main content

Community Repository Search Results

resource research
How can we understand what inclusive informal science education might look like in practice? This research brief provides a short overview of what we do know about inclusive informal science learning from research and covers some of the limitations of that research. Starting with some key issues to consider in terms of informal learning research, this paper outlines some practical points, and briefly reviews the relatively small amount of research that is specifically about inclusive informal science learning. The focus of this paper is on conceptual inclusion and a few, specific social
DATE:
TEAM MEMBERS: emily dawson
resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Public Programs
This pathways project will design, develop and test Do-It-Yourself, (DIY), hands-on workshops to introduce and teach middle school females in underserved Latino communities computing and design by customizing and repurposing e-waste media technology, such as old cell phones or appliances -- items found in the students homes or neighborhoods. The major outcome of the project will be the creation of a workshop kit that covers the processes of DIY electronics learning taking place in the workshops for distribution of the curriculum to after school programs and other informal science venues. The PIs have implemented three pilot projects over the last three years that demonstrate the ability of hands-on DIY electronics curricula to motivate and encourage students and to enable them to acquire a deeper understanding of core engineering, mathematics and science concepts. This project would extend the approach to underserved Latino youth, particular girls of middle school age. This audience was identified because of the historically low rate of participation in STEM fields by people in this group and the particular challenges that females have in acquiring knowledge in technical STEM areas. The proposal suggests that the approach of using hands-on workshops that rely on low technical requirements -- essentially obsolete or discarded electronic equipment, primarily from homes of participants -- will encourage the target audience to experiment with items they are familiar with and that are culturally relevant. The hypothesis of the project is that this approach will lower barriers to experimenting with "circuit bending" - the hand-modifying of battery-powered children's toys to build custom electronic instruments and lead to greater participation and success of females in the target group. The project will provide free workshops in two neighborhood locations and be supported by undergraduate student mentors and volunteers and staff of two community groups that are part of the project, Machine Project and Girls, Inc. Participants will demonstrate the finished projects to the workshop group, mentors and parents. Each participant will receive a copy of the workshop handbook in both English and Spanish to take home so that parents, members of the community and caregivers can supervise and participate in future projects.
DATE: -
TEAM MEMBERS: Garnet Hertz Gillian Hayes Rebecca Black
resource project Media and Technology
Mission to Mars engages 6th-8th grade students in the science, engineering and careers related to Mars exploration. The program is led by the Museum of Science and Industry, Chicago, and includes as partners Challenger Learning Centers in Woodstock, IL, Normal IL and three NASA Centers (Jet Propulsion Laboratory, Marshall Space Flight Center, and Johnson Space Center). The project aims to:

Link, via videoconference, urban and rural middle school students from low income communities in an exploration of space science
Develop and launch programs that showcase NASA Center research
Enrich middle school curricula and promote learning about NASA’s space missions with experiences that inspire youth to pursue in NASA-related STEM careers.
Programs and products produced include:

3 videoconference program scenarios that highlight research being conducted at NASA Centers
Pre- and post-event curriculum materials designed for middle school classrooms
Teacher professional development workshops
Communication support for NASA professionals
iPad apps utilized during the program
Since the program launched five years ago, Mission to Mars has served 7,676 students. MSI seeks to provide opportunities for all learners, and works to remove barriers to participation in high-quality science learning experiences. Mission to Mars allows MSI to engage more Chicago Public Schools (where 86% of students are economically disadvantaged) in real and relevant science experiences that may lead to STEM careers.

As MSI’s CP4SMP grant comes to an end, the Museum has committed to continued delivery of the program through 2 Mission to Mars Learning Labs, offered to 6-8th grade school groups visiting on field trips. Live videoconferencing with JPL and Johnson will occur during roughly half of the sessions. Our Challenger Learning Center partners will integrate Mission to Mars activities, materials and iPad apps into their own Mars-themed programs. Together these efforts extend the transformative hands-on science experiences developed under the Mission to Mars grant to a whole new audience of middle school students and teachers.
DATE: -
TEAM MEMBERS: David Mosena
resource research Public Programs
This article focuses on three approaches to STEM in out-of-school time that would be instructive for any organization seeking to develop STEM opportunities for teen girls. While Techbridge and Queens Community House focused on reaching populations most underrepresented in STEM—girls of color and those from immigrant and low-income families—the strategies they used could be applied to any population of adolescent girls.
DATE:
TEAM MEMBERS: Harriet Mosatche Susan Matloff-Nieves Linda Kekelis Elizabeth Lawner
resource research Public Programs
Informal science educators play a key role in promoting science literacy, safety, and health by teaching pesticide toxicology to the large, at-risk Latino farmworker population in the United States (US). To understand the experiences of informal science educators and the nature of farmworker education, we must have knowledge of farmworker educators' beliefs, yet little is known about these beliefs and how beliefs about teaching, pesticide risk, and self-efficacy might influence teaching environments and practices and potentially inform the field of informal science education. In this
DATE:
TEAM MEMBERS: Catherine LePrevost Margaret Blanchard W. Gregory Cope
resource project Public Programs
Our goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy. We recognize a pressing need creating more sustainable solutions for the (human) built-environment and of stabilizing economic patterns that uphold sustainable systems. to prepare citizens for the challenges of The ASCEND model is designed to encourage these societal shifts, but at the same time, it is an attempt to put theory into practice - activating educational practices aligned with research on human development and cognition. For some time now strong recommendations for apprenticeship learning have emphasized the function of legitimate peripheral participation – the possibility of which becomes more prevalent in robust communities of practice. As compared to top-down approaches (typical of formal education settings) these "learning communities" are seen as being more closely aligned with our natural propensities for learning and cognition. ASCEND represents a design-experiment -an attempt to learn how we can create and sustain opportunities for apprenticeship learning in an interdisciplinary arena at the leading edge of technical innovation. In addition, the ASCEND model introduces and examines the efficacy of “digital storytelling” as an alternative to more traditional forms of apprenticeship learning and as a means to engage and advance this and future generations in STEM. A further goal is to develop innovative measures of assessment commensurate with this new model of apprenticeship learning. Finally ASCEND explore how informal learning organizations (museums, libraries, preserves etc.) can use digital storytelling to develop community-driven programs inclusive of at-risk youth and other hard to reach audiences.
DATE: -
TEAM MEMBERS: Michael Isaacson Doris Ash Jeffrey Bury Irene Lusztig Tamara Ball
resource project Public Programs
This Pathways project from the Ocean Discovery Institute (ODI) seeks to develop and pilot a program model designed to fill an identified gap in citizen science research and practice literature: how to effectively engage and better understand how to foster participation among people from under-represented groups in citizen science research. The ODI model is designed around six principles: (1) leaders who are reflective of the community, (2) science that is locally relevant, (3) guided, as opposed to self-guided, experiences, (4) direct interactions with scientists, (5) progressively increasing responsibilities for participants who express interest, and (6) removing barriers to participation, such as transportation, language, family involvement and access to technology. The project addresses environmentally degraded, crime-ridden local canyons, a locally relevant STEM-related issue, and leverages the Southern California Coastal Water Research Project's (SCCWRP) regional citizen science effort focused on identifying the sources and pathways of trash through regional watersheds. The scientific research components of the project focus on four canyons in the area, employing sampling methods developed by SCCWRP. Youth who are part of other ODI programs and who have demonstrated leadership and interest in science, work with the project team to scaffold family and youth participation in project activities taking place during afterschool and weekend time. Based on continued participation in the project, community participants can become more involved in the project, starting as "new scientists" and moving through "returning scientists" to "expert scientists" roles. The project evaluation seeks to identify the role and importance of the components of the proposed model with respect to participation, retention, and learning by participants from groups under-represented in STEM. The dissemination products of this Pathways project include a white paper describing the model and lessons learned as well as presentations to community groups and education and citizen science practitioners. Based on insights from the iterative approach to the model during this Pathways study, a subsequent full-scale development project would seek to engage citizen science projects around the nation in adapting the model to increase participation of individuals from groups underrepresented in STEM, including building out ODI's citizen science programming.
DATE: -
TEAM MEMBERS: Lindsay Goodwin Roxanne Ruzic Theresa Sinicrope Talley
resource project Media and Technology
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
DATE: -
resource project Public Programs
The Chicago Zoological Society (CZS) in collaboration with Eden Place Nature Center, the Fuller Park Community Corporation, and the University of Illinois at Chicago (UIC) will implement the SCIENCES Program, Supporting a Community's Informal Education Needs: Confidence and Empowerment in STEM. The primary goals of this Full Scale Development project are to broaden access to and participation in environmental science, strengthen partnerships between CZS, Eden Place, and UIC, and gain insights into the 'ecosystemic' learning model which promotes scientific literacy and agency in the community. The project targets a low-resource community with a minority audience while the secondary audience is informal science learning organizations and researchers who will advance research in informal learning. The theoretical framework for the project design draws on conservation psychology, informal science learning, civic ecology education, and urban science education to create an ecosystematic, geographically centered approach. The deliverables include research, curriculum, and engaging hands-on programs for youth, families, adults, and teachers, reaching both in-school and out-of-school audiences, in addition to the SCIENCES Implementation Network. Three potential curriculum themes to be explored are water conservation and protection, pollinators for healthy ecosystems, and community resilience to climate change. The SCIENCES project offers a comprehensive suite of engaging programs for community audiences. For example, the year-long Zoo Adventure Passport (ZAP) program for families includes hands-on experiments and field trips, while project-based learning experiences enable teens to create wetlands, design interpretive signage, and develop associated public programming. School-based programs include professional development for teachers on the Great Lakes ecosystem and invasive species. Existing programs that have been previously evaluated and demonstrated to show learning impacts will be adapted and modified to meet the goals of the ecosystemic learning model by providing multiple learning opportunities. New learning resources will also be created to support the content themes and provide continuity. The result will be a comprehensive approach that ensures deep community engagement by individuals, families, and organizations, with cohesiveness provided by the overarching content themes which broaden access to STEM learning resources and leverages partnerships. The project includes both a research and evaluation plan. The primary research question to be addressed is: How does a large informal science learning institution work with a community-based organization to support environmental scientific literacy and agency at all levels of the community? A sociocultural framework will be used for this mixed-methods case study research. Study participants include community leaders, youth, parents, teachers, and staff from Eden Place. The case study sample will include 20 focal individuals drawn from the participant groups and approximately 300 survey participants. Case study data will be triangulated with evaluation data and analyzed using a grounded theory approach. By examining changes from the baseline following the implementation of the community programs, the findings may provide insight on agency and science literacy among community members. The comprehensive, mixed-methods evaluation plan employs a quasi-experimental design and incorporates front-end, formative, and summative evaluation components. The evaluation questions address the quality of the processes and products, access to environmental science learning opportunities, environmental science literacy, sustainability, and barriers to implementation. An extensive dissemination plan is proposed with a dual emphasis on meeting stakeholders' needs at multiple levels. The evaluation and research teams will emphasize publication in peer reviewed journals and presentations at conferences for informal science education professionals. Findings will be shared with the Fuller Park community stakeholders using creative methods such as one-page research briefs written in layperson's language, videos, and recorded interviews with participants. The local project Advisory Board will also be actively involved in the dissemination of findings to community constituents. The SCIENCES National Amplification Network will be created and work collaboratively with the American Association of Zoos and Aquariums and the Metropolitan Green Spaces Alliance to disseminate the model. Collectively, the activities and deliverables outlined in this proposal will advance the discovery of sustainable models of community-based learning while the research will advance the understanding of informal learning support for science literacy and agency.
DATE: -
resource project Public Programs
The goal of this outreach program was for Chemistry at the Space-Time (CaSTL) limit to partner with the Boys and Girls Club (BGC) of Santa Ana, CA to increase their participants' interest, enthusiasm and learning outcomes in Science Technology Engineering and Math (STEM) fields, through the development of science and chemistry hands-on lessons. The Boys and Girls Club of Santa Ana serves nearly 2,700 participants each day at six sites. Ninety percent of their participants identify as Hispanic/Latino and 93% are on free or reduced lunch. Although the Boys and Girls Club offers limited STEM activities, they agreed to partner with CaSTL, a UC-Irvine NSF-funded Center for Chemical Innovation, to expand their STEM ISE activities. CaSTL, in close collaboration with both the California Science Project of Irvine (CSPI), developed 24 science lesson plans that engage participants in high-level, hands-on, and interactive lessons that expose program participants to the visualization of chemistry and physics, based on CaSTL's mission. All lessons align with the California Science Standards, are highly interactive, and do not mimic the school day. These lessons compliment the state standards, but go much further in providing the participants experimental, hands-on activities that they often do not receive in their schools, due to budget, space and time restrictions. CaSTL faculty and graduate students ensured that the lens through which CaSTL research occurs was clearly represented in the lessons. CaSTL graduate students developed one of the lessons and kit and taught the spectroscopy lesson at the club.
DATE: -
TEAM MEMBERS: Lauren Shea Elizabeth Cruz
resource project Informal/Formal Connections
The Learning and Youth Research and Evaluation Center (LYREC) is a collaboration of the Exploratorium, Harvard University, Kings College London, SRI International and UC Santa Cruz. LYREC provides technical assistance to NSF AYS projects, collects and synthesizes their impact data, and oversees dissemination of progress and results. This center builds on the Center for Informal Learning in Schools (CILS) that has developed a theoretical approach that takes into account the particular strengths and affordances of both Out of School Teaching (OST) and school environments. This foundation will permit strengthening the potential of the NSF AYS projects to develop strong local models that can generate valid and reliable data that can guide future investment, design and research aimed at creating coherence across OST and school settings. The overarching questions for the work are: 1. How can OST programs support K-8 engagement and learning in science, and in particular how can they contribute to student engagement with K-8 school science and beyond? 2. What is the range of science learning outcomes OST programs can promote, particularly when in collaboration with schools, IHE's, businesses, and other community partners? 3. How can classroom teachers and schools build on children's OST experiences to strengthen children's participation and achievement in K-12 school science Additionally, the data analysis will reveal: 1. How OST programs may be positioned to support, in particular, high-poverty, female and/or minority children traditionally excluded from STEM academic and career paths; and 2. The structural/organizational challenges and constraints that exist to complicate or confound efforts to provide OST experiences that support school science engagement, and conversely, the new possibilities which are created by collaboration across organizational fields. Data will be gathered from surveys, interviews, focus groups, evaluation reports, and classroom and school data.
DATE: -
TEAM MEMBERS: Richard Semper Bronwyn Bevan Patrick Shields