Skip to main content

Community Repository Search Results

resource project Public Programs
Water for Life (WfL) is a full scale development youth and community based program; centered on freshwater literacy, water conservation and rainwater harvesting led by the Pacific Resources for Education Learning (PREL) in Hawaii. The goals of the project are to: (a) promote an understanding of water conservation and stewardship in areas lacking adequate quality water supplies and (b) build local capacity among rural communities to develop and employ site specific freshwater harvesting strategies proven to improve water quality. Rural communities within four Pacific Island entities in the U.S. affiliated Freely Associated States (FAS) will participate in WfL activities. PREL is collaborating with a host of organizations (such as the Federated States of Micronesia National Department of Education, Marshall Islands Conservation Society, and the Micronesian Conservation Trust, etc.) to develop and implement all phases of the initiative. This work is already improving the quality of life for hundreds of people in the FAS through water conversation education and improved water quality in local areas. Working closely with site-embedded PREL staff, Core Teams at each site - consisting of 4-6 local leaders from environmental agencies, water/sanitation systems, and education institutions - participated in a 5-day professional learning immersion in May, 2013, to buld capacities to develop and facilitate water conservation and catchment activities at the four target sites in the FAS. The Core Team members at each site now are recruiting and collaborating with local community members to implement site-specific projects that both educate and provide enhanced access to high quality drinking water. Both adults and youth are now engaging in a spectrum of proejcts that address loca needs and priorities through site-specific service learning activities. The site-specific focus in each locale, determined by the local Core Team, is distinct. In Palau, the Core Team has built broader community awareness of water conservation issues, raised the issue of water security in national conversations, engaged remote communities in improving natural rainwater drainage collection systems, and produced youth-oriented educational materials focused on local sites. In Yap, the Core Team members have collaborated with public utilities to install first-flush diverters into community rainwater catchment systems on Yap proper, and now are installing these devices in rainwater catchment systems on Yap's neighbor islands. In Chuuk, groundwater springs in remote communities are being upgraded for improved storage capacity, protection against contamination, and better public access. In Majuro (RMI), public school rainwater catchment systems are being repaired, repainted, cleaned, and upgraded so that schools can and will provide adequate drinking water to students (and to broader segments of the community during droughts). Broad segments of communities, including school classes and clubs, church and civic groups, etc. are becoming increasingly involved in building better water security and resilience for their communities, in preparation for a predicted drought, predicted to hit in the winter of 2014-2015, brought on by an El Nino event now edevelopig in the eastern Pacific. Water for Life has produced a range of locally relevant educational materials, including books, pamphlets, flyers, etc., some in English and others in local languages. Posters and billboards are being produced to enhance and maintain public awareness. Infrastructure projects are enabling better collection of more, higher quality water for drinking. A full-scale water handbook is under development, and this will serve as a basis for a self-contained water 'course' that will be offered through local community colleges. The experiences of project participants are being captured, analyzed, and reported in front-end, formative, and sumative evaluations conducted by David Heil & Associates. Thousands of individuals, comprising large segments of the participating countries' populations, will be directly impacted by the project. The results will be applicable to other remote and rural communities outside of the Pacific distressed by poor water quality and ineffective freshwater harvesting systems.
DATE: -
TEAM MEMBERS: Ethan Allen Danko Taborosi
resource project Public Programs
Who We Are: A network of informal educators, climate scientists, learning scientists and local partners across four cities, dedicated to improving local understanding of and engagement with climate change science. Mission: CUSP aims to foster a network of climate-focused organizations to implement targeted, coordinated, and concentrated educational strategies that explore local climate impacts and community-level responses. What We Do: Unite local organizations committed to addressing the impacts of climate change into collaborative network Use latest climate science and learning science research to inform program development Connect urban residents’ personal interests to larger city systems impacted by climate change, and provide residents opportunities to explore city-wide responses Deliver programs that are targeted (aimed at specific audiences), coordinated (presenting consistent and clear information about the science of climate change), and concentrated (delivered many times, through many programs) Test the hypothesis that when people encounter the same science content in multiple settings, from multiple points of view, they are more likely to understand and remember important concepts What We Offer: A Community of Practice for local organizations, including training on best practices of climate communication and education Provide local organizations with current climate science impacting their city, and latest learning science research Opportunities for city residents to explore local impacts of climate change in every day settings, at neighborhood centers, at schools, online, and at city festivals. Opportunities for city residents to engage with local organizations in community-level responses to climate change
DATE: -
TEAM MEMBERS: The Franklin Institute Raluca Ellis Frederic Bertley Steven Snyder Radley Horton Kevin Crowley
resource project Public Programs
This is a Broad Implementation proposal. Our goal is to create a vibrant, sustained community of practice around the established Café Scientifique New Mexico model for engaging high school teens in science, technology, engineering and math; scale-up will be accomplished via a national network of committed partners. The adult Cafe Scientifique model for engaging citizens in science has proven very effective and has been implemented widely. The interaction in a social setting with a scientist-presenter around a hot science topic is the key to the model’s success. With ISE funding, the model has been adapted by Science Education Solutions for the high school teen audience. Cafe Scientifique New Mexico, now starting its fifth year, has had documented success in providing teens with increased STEM literacy and a more realistic picture of scientists as real people leading interesting lives. Teens come to better understand the nature of science and are more likely to see the relevance of science to their lives. Scientists express strong satisfaction with the nature of our coaching and the resulting quality of their science communication. The program has been continually evaluated and improved, and is now ready for broad implementation. Intellectual Merit: Teenagers are the adult citizens and workforce of tomorrow. Teens are reaching a critical life juncture and are making choices that affect their future life style, life-long learning behaviors, and careers. Yet they are increasingly dropping out of the STEM pipeline in school. Even teens interested in STEM often know little about science and engineering careers and the nature of scientific research. Teen Cafés can play an important role in addressing these challenges. We have two major objectives: 1. Implement the Café Scientifique model of Teen Cafés in a national network of sites committed to adopting and adapting the program and validating its impacts with diverse audiences; and 2. Create a vibrant and sustainable community of practice comprised of ISE and STEM professionals interested in engaging teens in STEM through Teen Cafés. We have formed a core network of six initial partners: Southern Illinois University Edwardsville, Center for STEM Research, Education, and Outreach; The Florida Teen SciCafé Partnership; North Carolina Museum of Natural Sciences, Raleigh; Science Discovery, University of Colorado; The Pacific Science Center in Seattle; and The Missouri AfterSchool Network (MASN) – Project LIFTOF. We will add two more core partners in Year 3. The core partners will join the Teen Cafe Network in a staged fashion in years 1 - 3. Each will reach sustainability over a three-year funding period. Each node has a local area network of partners consisting of organizations that will host local Cafes; scientific organizations with potential presenters; schools and other organizations for recruiting teens; and entities capable of contributing to financial sustainability. The network will provide a structure for a dynamic, growing, and sustainable community of practice to implement the Teen Café model, in which high school teens will gain skills in scientific discourse, thought, and exploration. STEM professionals will gain improved skills for communicating with public audiences and a new perspective on their research from a broader societal perspective. ISE professionals will gain capacity to adapt, implement, test, and further disseminate the Teen Café model and increased capability for preparing STEM experts to communicate effectively with teen audiences, along with tools, resources, and expertise to help them do so. Science Education Solutions will manage the project and provide the resources to support the community of practice, while continuing Cafe Scientifique New Mexico as a ninth network node. We will stimulate intensive ongoing communication of lessons learned across the network as partners start up their Cafe programs; external observers will be able to watch the program unfold. Broader Impacts: We will build capacity for serving teens and effective communication of science in the broad ISE and STEM communities by encouraging and nurturing others wishing to start a Cafe program and join the network. We have partnered with 10 large science and science education organizations, each with its own extensive network, which will allow us to further propagate the Teen Cafe Network. They are: National Ecological Observatory Network (NEON). Nanoscale Informal Science Education Network (NISE Net), The American Institute of Physics (AIP), Science Cafés.org (to include NOVA), Science Festival Alliance, Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), Informalscience.org, Project Liftoff: Elevating Science Afterschool, ITEST Learning Resource Center, and The Center for Multiscale Modeling of Atmospheric Processes (CMMAP). Each partner will also target underserved and diverse teen audiences for their programs.
DATE: -
TEAM MEMBERS: Michelle Hall Michael Mayhew
resource project Public Programs
Indianapolis / City as Living Laboratory (I/CaLL) is a city-wide civic collaboration engaging in cross-sector research that builds on prior research in informal science learning in public settings. It extends research in place-based and service learning traditions, and uses the city itself as an informal science learning (ISL) environment for Science and Engineering for Environmental Sustainability learning outcomes. This project is creating place-based science learning experiences as part of public spaces in Indianapolis and establishes the next generation of urban science museums that increase opportunities for learning. The project will develop a self-sustaining program for art/science collaborations as they inaugurate city-sanctioned changeable installations at I/CaLL sites. Data from the project will be used to inform ISL professionals at museums throughout the community and around the country. Thousands of volunteers and their families will help create I/CaLL spaces, engage with communities, and serve as research participants connecting with science learning through site development. The unprecedented scale of this project provides a full measure of informal science service learning at a city scale, offering data that can change how science learning is measured, how people from all walks of life develop science literacy as part of their social public experience, and embodying the concept of the city as a living science learning lab. Broader impacts include the development of the city as an informal science learning environment that will become a new standard for thinking about what cities as cultural units can become as we build a resilient Science and Engineering culture for Environmental Sustainability.
DATE: -
TEAM MEMBERS: timothy carter Gabriel Filippelli Mary Miss John Fraser
resource project Media and Technology
This project from the University of Florida proposes to derive and develop a network and community of practice (CoP) among amateur and professional paleontologists across the country. Should this project be successful, it would put together 40 professional Paleontologist with 23 amateur Paleontology clubs across the country. The advantage of this organization would be to facilitate sharing of specimens (digitally on the web), educating each other, and most important, making the public outreach from each club more effective. While each club has specimens, this network would provide access to over 100 million digitized samples. The web-base for this collection will be managed at the University of Florida under the direction of the PI. The research portion of this project will determine what the essential elements necessary are for effective learning between professionals and amateurs and how the CoP enhances amateur learning and outreach efficacy. The project plan includes a centralized organization to initially form the community of practice, call general meetings, publish newsletters and organized a large meeting at the University of Florida in the coming year. Further, the project team will conduct evaluation on how the project is helping members develop and how the organization can be improved. Educating individuals in the field of paleontology is generally a positive experience. This project will facilitate knowledge building among the individual members of the clubs, which will enhance their perspective and enable them to reach out to members of their communities. The project will be evaluated at every level to ensure that the existing clubs are incorporated into the project and new clubs are welcomed and engaged as well.
DATE: -
resource project Public Programs
This full-scale development project will address the need for creative models to support STEM learning in underserved rural communities that lack traditional infrastructure such as science centers. The project will create and study an innovative model of capacity-building: viz., small networks of community-embedded “STEM Guides” will be trained to identify a range of existing STEM resources available in their local regions, and to connect STEM-interested youth with them in creative and personal ways. Anticipated learning outcomes for youth and families include greater awareness of and interest in STEM experiences and pathways. At the regional level, the project will build capacity through increasing the STEM Guides’ knowledge of local STEM opportunities, and by enhancing connections among STEM-related resources, programs, and industries. The project will implement and study STEM Guide networks in a staggered series of five low-income, rural regions, providing startup resources and professional development. The project will increase the frequency and depth of out-of-school STEM experiences for approximately 3,000 youth aged 10-18 at a relatively low cost, creating a national model for STEM capacity-building in rural settings. It is led by the Maine Mathematics and Science Alliance, with 4-H, Cornerstones of Science (library-based STEM) and Maine’s university system as collaborators. EDC is the primary external evaluator.
DATE: -
TEAM MEMBERS: Jan Mokros Sue Allen
resource project Media and Technology
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
DATE: -
resource project Public Programs
The project is designed to engage Hispanic students in grades K-5 in STEM in afterschool programs within community-based organizations (CBOs). The project builds on the foundation of an NSF-supported afterschool science program--APEX (Afterschool Program Exploring Science). In collaboration with National Council of La Raza (NCLR), and ASPIRA, the project adapts APEX into a bilingual English/Spanish format and, using a train the trainer model, disseminates it nationally, using a train the trainer model. Each of the ten local project sites will build on a partnership between a science museum and a CBO affiliate of NCLR or ASPIRA. The project is designed to: (1) Build the organizational capacity of partner science museums to work with CBOs and the Hispanic community. (2) Strengthen links between science museums and Hispanic serving CBOs in their communities. (3) Engage the expertise, involvement, and collaboration of national Hispanic-serving organizations, NCLR and ASPIRA, in STEM education. (4) Increase the engagement of Hispanic children and families in STEM. The project evaluation will investigate how effectively the project builds the organizational capacity of partner museums and CBOs in engaging Hispanic children and families in STEM; the types and strength of science museum/CBO partnerships; the effectiveness of the project in increasing Hispanic student and family engagement in STEM, and the types of contributions the project makes to the field of informal STEM learning. The evaluation will use qualitative and quantitative methods, including surveys, interviews, case studies, social network and collaboration analysis, observations, activity tracking, embedded assessment, photo elicitation, and focus groups.
DATE: -
resource project Public Programs
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE: -
TEAM MEMBERS: Andre Nel Yoram Cohen Hilary Godwin Arturo Keller Patricia Holden
resource project Public Programs
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
DATE: -
TEAM MEMBERS: Linda Kekelis
resource project Media and Technology
The IRIS Education and Public Outreach program draws upon the seismological expertise of Consortium members and combines it with the staff expertise to create products and activities that advance awareness and understanding of seismology and geophysics while inspiring careers in Earth science. These products and activities are designed to impact 6th grade students to adults in diverse settings: self-directed exploration over the Web, interactive museum exhibits, major public lectures, and in-depth exploration of the Earth’s interior in formal classrooms. Each year, a select group of undergraduates spends the summer conducting research under the expert guidance of Consortium members and affiliates. Other highlights include the widely distributed Teachable Moment slide sets for use in college and school classrooms within a day of major earthquakes, new animations and videos, new content for the Active Earth Monitor, and expanded use of social media.
DATE: -
TEAM MEMBERS: Joe Taber
resource project Public Programs
The Education and Outreach (EO) program is an essential part of the CRISP MRSEC located at Yale and SCSU. CRISP offers activities that promote the interdisciplinary and innovative aspects of materials science to a diverse group of participants. The objective of the program is to enhance the education of future scientists, science teachers, K-12 students, parents, and the general public. CRISP’s primary informal science activities include public lectures, family science nights, New Haven Science Fair and museum partnerships.
DATE: -
TEAM MEMBERS: Yale University Connecticut State University Christine Broadbridge