Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource project Media and Technology
The New York Hall of Science (NYSCI) will develop, test, market, and disseminate an interactive graphic novel iBook that will use the interests of young people (ages 10–14) in animals and comics to engage them in learning about health and clinical research. Provisionally called “Transmission: Astonishing Tales of Human-Animal Diseases,” the project represents a new approach to engaging young people in biomedical science learning.

Graphic novels are one of the fastest growing categories in publishing and bookselling, and today, they are significantly more sophisticated than the comics that came before them. They are also enormously popular among young people. The proposed graphic novel iBook will focus on the diseases that humans and animals share and pass between them (sometimes to devastating consequences), from Ebola, bird flu, and West Nile disease to influenza, measles, and pneumonia. Moreover, like many other contemporary graphic novels, it will address a pressing issue of the day—amely, the growth of zoonotic and anthropozoonotic diseases.

The iBook will be developed in a digital, interactive format (a growing trend within the genre) and, like many graphic novel titles, will take a mystery and forensic crime approach to exploring its content. Ultimately, Transmission will become a national model for conveying biomedical understanding through the use of up-to-the-minute interactive iBook technologies and an engaging graphic novel format.
DATE: -
TEAM MEMBERS: martin weiss Geralyn Abinader
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource project Professional Development, Conferences, and Networks
The goal of Women in Cognitive Science is to improve the visibility of women scientists by fostering an environment that welcomes and nurtures young women scholars, to contribute to the professional development of scholars throughout their career, and to facilitate creation of a network that will provide contacts and connections to other women in science. Several workshops are designed for women in cognitive science, especially women in the early stages of their academic career. The workshops focus on negotiation techniques to create opportunities and optimize mechanisms to sustain research visibility and productivity. A second focus is on grant application writing for predoctoral, postdoctoral, and early career scientists. Workshops will take place at meetings of the Psychonomic Society, the Cognitive Science Society, and the Association for Psychological Sciences. The workshops will take the form of a public forum with invited speaker-panelists to initiate discussion about best practices for the professional advancement of women in cognitive science at the individual and institutional level. By partnering with these established societies, the workshops will maximize the outreach potential to a group that continues to be underrepresented in senior academic positions in the cognitive sciences.
DATE: -
TEAM MEMBERS: Mary Peterson Diane Beck Karen Schloss
resource project Public Programs
The project will conduct a nation wide study to address three broad questions:

(1) How does the public view zoos and aquariums and how do these institutions affect STEM (Science Technology Engineering Mathematics) learning outside their walls?

(2) How do visitors experience zoos at different stages in their lives and how do zoo visits affect their knowledge and perspectives concerning environmental issues and conservation?

(3) What are the entry characteristics of visitors and how do those characteristics play out in behaviors during a visit?

The project is designed to advance understanding of how informal STEM learning emerges through the intersection of institutional pedagogy and learning goals and the characteristics of individuals and their social and cultural backgrounds. As the first institutional study that advances a field-wide research agenda, the project will map how to implement a national collaborative effort that can help refine program delivery and cooperation between zoos, aquariums and other STEM learning institutions.

The study will describe zoo and aquarium visitors based on a broad understanding of demographics, group, and individual perspectives to expand understanding of how these factors influence visitor learning and how they view the relevance of educational messages presented by zoos and aquariums. The project will result in reports, workshops and a handbook presenting findings of practical value for educators, a research platform and research tools, online discussion forums, and directions for future research. The project, led by New Knowledge Organization (NKO), will be carried out through the collaboration of NKO with other informal research organizations and the Association of Zoos and Aquariums (AZA) with its 230 informal science learning institutional members. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
DATE: -
resource project Public Programs
The overall goal of this project is to develop and evaluate a community model of informal genomic education that is culturally and educationally appropriate for low-literacy Latino adults born in Mexico and Central America (MCA). The community engagement strategy and materials created will be designed to lead to three learning outcomes: increased interest and engagement with genomics, change in science, technology, engineering, and mathematics (STEM) attitudes and self-identity, and increased understanding about gene function and the human genome. The model created in this project will have the potential to inform other educational efforts, nationally. Semi-structured in-depth interviews will be conducted in Spanish with 60 MCA Latinos to delineate beliefs and knowledge about genetic and genomic concepts and transmission of traits. Interview transcripts will be systematically analyzed to identify explanations about trait transmission, and familiarity with genetic and genomic concepts. Variation in responses across geographic and cultural regions will be noted. Knowledge from this analysis will be used to develop a meaningful community-based learning program about genomics. Lay community educators will facilitate informal learning with MCA adults about genetics and genomics, including gene-environment interactions. This project will use information about environmental exposures (e.g., residential pesticides) as a vehicle to pique participants' interest and illustrate genetic and genomic content. It will compare outcomes for 100 participants who receive practical strategies only to reduce negative and increase positive environmental exposures, respectively, to 100 participants who also receive genetic and genomic content. The strategy and materials will be disseminated through journal articles and presentations at meetings that focus on informal STEM education. The process and content will be rigorously evaluated throughout the project. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Joanne Sandberg
resource project Public Programs
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Monica Ramirez-Andreotta Aminata Kilungo Leif Abrell Jean McLain Robert Root
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Innovations in Development project will develop new knowledge about joint parent-child participation in science talk and practices using a 2nd screen app synced with a television program. "Splash! Ask-Me Adventures" is an app designed to work in conjunction with a marine science-focused television program for children 2-8 years old that will premier nationally on PBS Kids (Fall 2016). This free app will include a variety of "Conversation Catalysts" tied to the television episodes to help parents support children's science learning at home and in other venues such as aquariums and science centers. The project aims to support children's conceptual understanding of science concepts and practices, empower parents and caregivers to facilitate learning during media engagement, and contribute to the research literature on joint engagement with media. Collaborating project partners include The Jim Henson Company, Curious Media, SRI Education, and The Concord Consortium. Innovation in new methodology and instrumentation resulting from this project includes the creation of two new research tools to measure (1) families' discourse while engaging with media and (2)the impact of "Splash! Ask-Me Adventures" on children's science learning. Potential contributions to society-at-large are: (1)young learners will be better prepared to meet STEM curriculum milestones in school and scientific/technical challenges as adults; (2) parents will use new dialogic questioning skills to become more confident and active learning facilitators during media and non-media experiences with their children; (3) Conversation Catalysts, a new sub-genre of educational apps will emerge, based on proven theories of beneficial adult-child interaction and the impact of designed joint engagement with media on informal learning; and (4)a new generation will embrace marine stewardship.
DATE: -
TEAM MEMBERS: Stephanie Wise Savitha Moorthy Ximena Dominguez Phil Balisciano Celine Willard Carlin Llorente
resource project Exhibitions
Life on the Edge will be a 1,500-sq-ft traveling exhibition to engage museum guests with space, space exploration, and the search for life beyond our home planet through the lens of Earth's extremophiles. The exhibition will explore life forms in extreme, harsh environments on Earth, and how studying these creatures informs the search for extraterrestrial life and habitable environments within and beyond our solar system. This exhibition will provide open-ended challenges and hands-on activities that utilize NASA research and educational materials to inspire elementary-aged youth ages 5-11 and their families. Based in Ithaca, NY, Sciencenter will focus the tour on small, rural museums, including SpectrUM Discovery Area (Missoula, MT), Flathead Reservation (MT), Science Zone (Casper, WY), and Imagination Place Children's Museum (Gadsden, AL). Schools and other community partners of the host museums will be leveraged in presenting family science nights, field trips, and facilitated science programs. These activities will provide additional opportunities for learners to increase their knowledge of core STEM content and science-process skills related to astronomy and astrobiology. In this institutional engagement project, Sciencenter will partner with (1) Cornell University's Department of Astronomy throughout the 5-year grant period to develop the scientific content and to ensure that content remains current and relevant with up-to-date NASA research, and (2) the University of Montana's SpectrUM Discovery Area, who will serve as the STEM outreach hub for the region, including outreach with youth of the Flathead Reservation. The expected short-term outcomes for youth ages 5-11, after visiting Life on the Edge are (1) 75% of participants will have increased understanding of basic principles of astrobiology and astronomy, along with the breadth of NASA scientific research and missions, and (2) 50% of participants will have increased awareness of career possibilities in STEM, specifically astrobiology, astronomy, and related space sciences.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Alexander Hayes Lisa Kaltenegger Holly Truitt Adrienne Testa Charlie Trautmann
resource project Media and Technology
The lack of diversity in the clinician-scientist workforce is a “very serious concern to the NIH” and to health care professions. Current efforts to broaden participation in STEM fields typically target high school and college-age students. Yet, history and national trends suggest that these efforts alone will not result in rapid or significant change because racial and ethnic disparities are already evident by this time. Children are forming career preferences as early as elementary school, a time when they have little exposure to science and STEM career options. The overall vision of this team is to meet the nation’s workforce goal of developing a diverse, clinician-scientist workforce while meeting the nation’s STEM goals. As a step toward this vision, the goal of This Is How We “Role” is to inspire elementary school students towards careers as clinician-scientists by increasing the number of K-4 students with authentic STEM experiences.

This goal will be attained through two specific aims. The focus of Aim 1 is to distribute and evaluate a K-4 afterschool program across the diverse geographic regions of the US, to support the development of a robust and diverse clinician-scientist workforce. Aim 2 is focused on developing the community resources (afterschool program curriculum, informational books and online certificate program) for promoting health science literacy and encouraging careers in biomedical and clinical research for K-4 students from underserved and underrepresented communities. Combined, these aims will enhance opportunities for young children from underserved communities to have authentic STEM experiences by providing culturally responsive, afterschool educational programs which will be delivered by university student and clinician-scientist role models who are diverse in gender, race, and ethnicity.

Books and an online certificate program about health issues impacting people and their animals (i.e. diabetes, tooth decay) will be developed and distributed to children unable to attend afterschool programs. Further, by engaging veterinary programs and students from across the US, along with practicing veterinarians, this program will examine whether the approaches and curriculum developed are effective across the diverse communities and geographic regions that span the country. Elementary school teachers will serve as consultants to ensure that educational materials are consistent with Next Generation Science Standards, and will assist in training university students and clinician-scientists to better communicate the societal impact of their work to the public.

The program will continue to use the successful model of engaging elementary school students in STEM activities by using examples of health conditions that impact both people and their animals. Ultimately, this project will educate, improve the health of, and attract a diverse pool of elementary school students, particularly those from underserved communities, to careers as clinician-scientists.
DATE: -
TEAM MEMBERS: Sandra San Miguel
resource project Public Programs
Our goal is to attempt the identification of Sevengill sharks (Notorynchus cepedianus) that may be returning to San Diego from year-to-year, using the pattern recognition algorithm provided in ‘Wildbook,’ a web-based application for wildlife data management, designed by Jason Holmberg. 'Wildbook' which has been successfully used to ID Whale Sharks (Rhincodon typus ) by their spotting patterns.

Sevengill sharks (Notorynchus cepedianus), are currently listed as Data deficient (DD) on the IUCN Red List: "This assessment is based on the information published in the 2005 shark status survey (Fowler et al. 2005).
DATE: -
TEAM MEMBERS: Heather Moncrief Michael Bear
resource project Media and Technology
This project will research factors influencing the implementation of programs designed to increase diverse participation in informal science. The goal is to provide the informal science education field with information and tools that will help them design effective programs that more effectively engage a broad range of diverse audiences. The project has two major components. First, the project will research the implementation of a citizen science project, Celebrate Urban Birds (CUB), in major U.S. cities. Citizen science projects involve public volunteers in gathering scientifically valid data as part of ongoing research. Second, building on results of the research, the project will launch a website and learning community (called a Community of Practice or CoP) supporting informal science educators that are involved in designing and implementing informal science programs with an emphasis on engaging diverse participants. The project will be lead by the Cornell Lab of Ornithology (CLO), a leader in designing and researching citizen science projects, in collaboration with the Association of Science-Technology Centers (ASTC) and five science center members of ASTC, where the CUB program will be implemented and researched. The objective of the research is to better understand contextual factors and how they impact implementation even when accepted practices are followed. Such research is key not only to revealing accepted practices but also to understanding how projects are implemented in the face of concrete operational, cultural, economic, and demographic variables. The research will use a comparative case study approach, which is designed for studies requiring holistic, in-depth investigation. The development of the website and the CoP will be guided by a Network Improvement Strategy, a research-based approach to designing educational CoPs. The development of the CoP will involve the project stakeholders including the informal science organization practitioners, community organization representatives, CUB staff, ASTC staff, advisors and consultants. This strategy will allow the project team and pilot sites to leverage their diverse experiences and skill sets to improve practice; provide space for researchers and practitioners to work together as partners; and develop a nuanced set of strategies that can be implemented across a variety of organizational contexts.
DATE: -