Skip to main content

Community Repository Search Results

resource research Public Programs
Making is a recent educational phenomenon that is increasingly occurring in schools and informal learning spaces around the world. In this paper we explore data from maker educators about their experiences with failure. We surveyed maker educators about how they view failure happening with youth in their formal and informal programs and how they respond. The results reveal some concrete strategies that seem to show promise for helping educators increase the likelihood that failure experiences for youth can lead to gains in learning and persistence. This article summarizes a survey of formal
DATE:
resource research Public Programs
We present results of an experimental study of an urban, museum-based science teacher PD programme. A total of 125 teachers and 1676 of their students in grades 4–8 were tested at the beginning and end of the school year in which the PD programme took place. Teachers and students were assessed on subject content knowledge and attitudes towards science, along with teacher classroom behaviour. Subject content questions were mostly taken from standardised state tests and literature, with an ‘Explain:’ prompt added to some items. Teachers in the treatment group showed a 7% gain in subject content
DATE:
resource project Public Programs
This exploratory learning research and design project will study how to use emerging technologies to help document practices in maker-based learning experiences. Despite its established potential for consolidating learning and sense-making, project documentation is often overlooked, not prioritized or seen as burdensome and therefore not integrated into the learning experiences. The project team seeks to understand and address with practice partners the barriers to documentation by systematically exploring how to physically embed and incorporate smart tools and documentation practices into learning environments, specifically creative hands-on learning spaces, like makerspaces. The goal is to understand how to scaffold learners to become more aware, reflective and attentive to their progress towards learning outcomes by embedding supportive tools physically in space as the actions unfold. Making and maker-based learning experiences offer tremendous opportunities to more fully engage diverse learners in STEM education and build a workforce prepared for innovation. Documentation of these learning experiences, both as an authentic practice that professionals engage in as well as an assessment practice for instruction, is often not supported. The project will create open source documentation for solutions and develop supporting case studies, web resources and guides to facilitate easy uptake and adoption of promising approaches.

This proposal will make significant research contributions in three ways: (1) develop and iteratively test a suite of embedded "smart" tools designed to scaffold, manage and trace process documentation practices; (2) study the integration of these tools in formal and informal activities and programs settings and characterize their influence on instruction and the assessment of learning outcomes; (3) establish a set of rubrics based on learner data streams to aid instruction and mark learner progress. Improving documentation practices and the assessment of learning outcomes will advance making as a core STEM educational activity. Through a better understanding of why and how to place networked documentation tools sensitive to space, time and context cues, the threshold for enactment and scaffolded usage can be lowered in a broader range of settings. Ultimately, this exploratory project will not only develop an integrated set of situated documentation tools, but also help us develop hypotheses for how documentation as a mediating process productively supports learning.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. The Multimedia Immersion (MI) project is will develop, pilot, and evaluate a nine-week STEM-rich multimedia production course for high school students. MI will make important contributions to the field through its efforts to design and evaluate the promises and challenges of a nine-week multimedia curriculum in multiple urban high schools. The MI course will engage teams of students to develop a personally and socially relevant storyline that guides their use of accessible audio and video technologies to create a five-minute animated video. To develop student STEM experience and provide technical support, the project will provide guidance and learning experiences in engineering (e.g., criteria, constraints, optimization, tradeoffs), science (e.g. sound, light, energy, mechanics) and multimedia technologies (e.g., computer based audio production, video editing and visualizations through animatics (i.e., shooting a succession of storyboards with a soundtrack). animatics).

Because the curriculum situates engineering and science learning in the context of multimedia production, there are natural synergies with several existing high school courses including engineering design, audio/video media production, and multimedia technology. Although these courses are typically electives in high school, developing a 5-minute animated short on a topic of interest may encourage girls and students from underrepresented groups to select this course over other electives. MI will impact 10 teachers and approximately 250 high school students per year. The project will result in the following resources: nine-week curricular unit (multimedia, science, engineering); assessments to monitor student learning of science, engineering and technology (design logs); and research on changes in student knowledge, interest, and a nine-week curricular unit (multimedia, science, engineering). Project resources will be disseminated to teachers, researchers, and curriculum and professional development providers via conference presentations, publications, and online webinars.

The MI project builds on student familiarity and interest in music, video and technology to promote an: (1) understanding of engineering design and physics and an (2) an appreciation of the fundamental role of STEM in popular culture. Project evaluation will be conducted using student surveys and an examination of work products in conjunction with implementation challenges and successes to generate evidence for the feasibility and utility of a high school multimedia course that explicitly addresses science and engineering learning. Project evaluation will use student design logs as a window into student design processes and conceptual understanding. Student design logs are an essential feature of MI curriculum design. With an appropriate structure, these design logs can inform teaching, afford an opportunity for students to reflect on their own work, and provide evidence of student thinking and learning for assessment purposes. Using student design logs as a window into students? design process and conceptual understanding is an important contribution to the engineering education community which has few options for measuring student knowledge in ways that are consistent with the hands-on, iterative nature of the design process.
DATE: -
TEAM MEMBERS: Marti Louw Daragh Byrne Kevin Crowley
resource project Media and Technology
The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.

The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.
DATE: -
TEAM MEMBERS: Leah Clapman
resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by developing a suite of digital tools designed to support positive messaging around skill-based education and careers and to improve mentors' communication with middle school-aged youth mentees. Maintaining U.S. economic advantage requires attracting talent to high-growth, high-demand skill-based, STEM-related careers that are traditionally attained through Career and Technical Education (CTE). Replacing old negative perceptions with new, more accurate messages about CTE and then reaching youth with these messages before high school is essential. Career-focused mentoring is a vehicle for delivering these messages and supporting youth exploration of CTE as a possible path for their own lives. Investigators will explore the hypothesis that through strong connections between those best positioned to articulate industry needs (mentors) and those most receptive to filling that need (mentees), this project will improve youth awareness and interest in CTE and the rewarding careers that are available to them. Research and development activities will be carried out collaboratively in informal learning environments in Boston and New York City that serve middle school-aged youth from underrepresented communities, through career-focused mentoring programs. The project team, led by media producers of the WGBH Education Foundation, includes market researchers and communications strategists at Global Strategy Group, learning scientists at Education Development Center, and mentorship program partners at SkillsUSA, Learning for Life's Middle School Explorer Clubs, and Boy Scouts of America's Scoutreach. If promising, the career-focused mentoring programs of SkillsUSA, Learning for Life, and Boy Scouts of America will incorporate the messaging roadmap and digital tools to support their mentoring curricula, which impact greater than one million youth in each year.

In the first phase of research, investigators will study perceptions of STEM-focused CTE from a nationwide sample of 800 middle school-aged youth and 30 mentors from skill-based STEM industries. In the second phase, investigators will work with six program leaders and 30 mentors from SkillsUSA, Explorer Clubs, Scoutreach, and other mentoring programs to document the needs of mentors for support as they enter into the mentoring process. The third phase will engage mentorship program leaders and 36 mentors in the iterative development of a suite of digital tools that would support positive messaging around skill-based education and careers and that would improve mentors' communication with youth mentees. In addition, a pre-post mentorship program pilot study will explore the promise of the digital tools for effectively supporting mentor-mentee communications that improve youth awareness and interest in STEM-focused CTE and skill-based, STEM-related careers. Thirty six mentors and 288 of their youth mentees will participate in the pilot study. Data sources for research include interviews and surveys of program leaders, mentors, and mentees, as well as tracking mentor activity within the online digital tool environment. This research would advance knowledge of how mentors influence disadvantaged youth perceptions of and interest in CTE and skill-based, STEM career pathways, in which there is currently little evidence as to how mentor preparation shapes ability to positively impact youth outcomes. Major outcomes will include a) deeper understandings of youth and mentor perceptions of CTE and mentors' needs for supporting their work with mentees, b) a messaging roadmap and digital tools that prepare mentors for their work with middle school youth, and c) empirical findings regarding the potential of the digital tools for effectively supporting mentor-mentee communications that improve youth's awareness and interest in CTE and skill-based, STEM-related careers. Outcomes will be shared widely to research, education, and industry communities, locally and nationally, through social media, partner networks, conference presentations, and research publications. An advisory board will provide independent review on the project activities.
DATE: -
TEAM MEMBERS: Marisa Wolsky Hillary Wells
resource evaluation Media and Technology
The goals of the project were to build an understanding about the perception of career and technical education (CTE) as an option for middle school students in pursuing skill-based STEM-related careers, and to use that information to develop an innovative suite of digital tools designed to improve mentors’ and school counselors’ communication with middle school–aged students.
DATE:
TEAM MEMBERS: Ashley Lewis Presser
resource project Public Programs
This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the State of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

The potential insights this research could garner on intersectionality between formal and informal STEM learning are substantial. As a consequence, this project is co-funded by the Advancing Informal STEM Learning (AISL) and Discovery Research K-12 (DRK-12) Programs. The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Likewise, the Discovery Research-K12 Program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
Informal STEM education needs high quality program evaluation. Research is particularly needed on the relationship between STEM outcomes and positive youth development (PYD) / socio-emotional learning (SEL). This pilot and feasibility project involves a collaboration between experts in STEM education, out-of-school time programs (OST), PYD, SEL, evaluation, and program development. STEM Scouts helps youth grow in character and develop skills using experiential activities and interaction with STEM professionals. This project expands the implementation of the Systems Evaluation Protocol (SEP), an evidence-based approach to evaluation planning.

The goals are to: 1) develop a theory of change for STEM Scouts highlighting the relationship between STEM outcomes and PYD/SEL outcomes; 2) pilot enhancements to the SEP (System Mapping, Ecosystem Modeling, and Model Validation); and, 3) determine the feasibility of conducting a national STEM Scouts study. STEM Scouts leadership and project researchers will work through the SEP to generate a stakeholder map, logic model, and pathway model (PM). Five STEM Scouts Labs across the country will participate in focus groups where they will complete SM to identify the system in which the Lab exists (e.g., stakeholders and decision-makers), review and revise their system maps, identify key outcomes and connections in the PM, and discuss how the PM reflects their STEM Scouts experiences. It is hypothesized the enhanced SEP will enable the working group to better understand factors hindering or enabling program and evaluation feasibility and success. Findings will be disseminated to the evaluation/research community, OST program providers/developers and the public.

This project is funded by the National Science Foundation's Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Jennifer Urban Miriam Linver
resource evaluation Public Programs
During the school year of 2017-2018, Fairchild Tropical Botanic Garden (Fairchild) implemented the second year of a four-year project entitled: Growing Beyond Earth (GBE). NASA is providing funding support for project implementation as well as an external project evaluation. The evaluation activities conducted this year were focused on understanding project implementation and assessing project outcomes using data collected between September 2017 and May 2018. This report’s findings and accompanying recommendations inform next year’s project implementation and evaluation activities.
DATE:
TEAM MEMBERS: Catherine Raymond Marion Litzinger Carl Lewis Amy Padolf
resource research Media and Technology
The Sloan Science & Film Teacher's Guide indexes by scientific subject matter over 50 short fiction films funded by the Alfred P. Sloan Foundation, that can be streamed for free anytime. The Guide offers an introduction, teaching framework, study questions, and additional resources. Each film is correlated with Next Generation Science Standards as well as New York City Science Standards. The Guide can be viewed online or downloaded as a PDF.
DATE:
TEAM MEMBERS: Sonia Epstein
resource research Community Outreach Programs
Schools often have limited resources to devote to science education, which can impact student interest in and preparedness for careers in STEM. Seattle Children’s Research Institute created the Science Adventure Lab, a mobile laboratory program, to support and enrich science education at low-resource schools and stimulate interest in science and pursuing a career in STEM. The mobile laboratory provides students with the unique opportunity to fully immerse themselves in authentic, hands-on science learning with scientists. This limits the burden on school resources and reduces disruptions to
DATE:
TEAM MEMBERS: William H Roden Rebecca Howsmon Rebecca A Carter Mark Ruffo Amanda L Jones
resource research Community Outreach Programs
Many urban New Yorkers believe that the Hudson River is so polluted that nothing could possibly live there. In reality, the estuary is thriving, and The River Project (TRP), a marine science field station in lower Manhattan, exists to showcase its vast biodiversity through place-based education. In 2014, TRP began collaborating on a city-wide initiative with New York Harbor Foundation and eight other partner organizations to integrate restoration science into Title I middle school curricula through the Curriculum and Community Enterprise for Restoration Science (CCERS). Teachers in the
DATE:
TEAM MEMBERS: Elisa Caref Melissa Rex Annie Lederberg Gaylen Moore