Skip to main content

Community Repository Search Results

resource evaluation Informal/Formal Connections
This summary brief captures highlights from the second year of the NSF-funded WaterMarks project. The technical evaluation report for this same project period can be found on the main project page. The purpose of this document is to communicate key updates (as observed by the evaluation team) in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This is the evaluation report for the second year of the NSF-funded WaterMarks project. It reflects a current summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource research Higher Education Programs
The project team published a research synopsis article with Futurum Science Careers in Feb 2023 called “How Can Place Attachment Improve Scientific Literacy?”
DATE:
TEAM MEMBERS: Julia Parrish Benjamin Haywood
resource research Higher Education Programs
The Museum of Science, Boston and Boston University received funding from the National Science Foundation to develop and implement a pilot program mentoring high school students in science research, communication, and education practices, through the lens of experimental psychology research.
DATE:
TEAM MEMBERS: Rachel Fyler Katie Todd Becki Kipling
resource evaluation Informal/Formal Connections
This summary brief captures highlights from the evaluation report for the first year of the NSF-funded WaterMarks project (also available on this page). The purpose of this document is to communicate key updates from evaluation in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This is the evaluation report for the first year of the NSF-funded WaterMarks project. It reflects an initial summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward. This report contains descriptions of embedded measures (i.e. anonymized drawings and reflections captured on a thematic postcard) included in community walks and analyses of secondary data (i.e., interviews conducted by other members of hte project team), as well as reflections emerging from the
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource research Public Programs
From 2019 to 2021, Knology undertook a project called Addressing Societal Challenges through STEM, which investigated how informal learning institutions are advancing the use of STEM knowledge and scientific reasoning to enable individuals, families, and communities to understand what they can do, and apply their learning to solving critical societal challenges. The literature reviewed (237 studies and articles) documented an emerging infrastructure to support the capacity of ISL institutions to address social issues. This infrastructure includes a body of empirical and peer-reviewed
DATE:
resource research Public Programs
WCS Education is committed to creating a diverse and inclusive movement of conservation advocates. We do this by creating equitable pathways to increased scientific literacy, engagement in conservation advocacy, and lasting connection with animals and nature. One of the programs that incorporates all of these strategies is Project TRUE (Teens Researching Urban Ecology). Project TRUE is a partnership between WCS and Fordham University that is both a social science research study and a youth development program designed to support youth in STEM career pathways. Teams of high school students
DATE:
TEAM MEMBERS: Su-Jen Roberts
resource project Public Programs
This award was provided as part of NSF's Social, Behavioral and Economic Sciences Postdoctoral Research Fellowships (SPRF) program and is supported by SBE's Developmental Sciences program and the Directorate for Education and Human Resources' (EHR) Advancing Informal STEM Learning program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. Sandra D. Simpkins at the University of California, Irvine, this postdoctoral fellowship award supports an early career scientist exploring high-quality and culturally responsive, math afterschool program (ASP) practices for under-represented minority (URM) youth. Mathematical proficiency is the foundation of youth's STEM pursuits. Yet today, far too many youth do not pursue STEM based on a perception that they are "not good at math". Students need to engage in contexts that spark their interest and their continued mastery and growth. ASPs are settings for such dynamic opportunities, particularly for URM students such as Latinos who attend lower quality schools and do not feel supported. In college, URM students often struggle with uninspiring and culturally incongruent STEM learning environments. The intergenerational nature of university-based STEM ASPs, whereby younger students are paired with undergraduate (UG) mentors, are opportunities to support both K-12 and UG students' motivational beliefs in math and STEM more broadly. This project will examine these intergenerational developmental processes in the context of a math enrichment ASP located at a Hispanic-Serving Institution. By studying how ASPs can serve as an important lever for promoting URM students' access and success in STEM, this project seeks to meaningfully inform efforts to broaden the participation of underrepresented groups in these fields.

This project seeks to understand how participating in a math enrichment ASP supports both youth participants' and UG mentors' motivational beliefs in math; to describe high-quality and culturally responsive practices; and to understand how to support the effectiveness of youth-staff relationships. To accomplish these research objectives, data will be collected from both youth participants and UG mentors through multiple methods including surveys, in-depth interviews, participant-observations, and video observations of youth-staff interactions. This project will add to our understanding of university-ASP partnerships. Further, the knowledge gained from this study will impact the larger landscape of practice and research on STEM ASPs by 1) addressing critical gaps in the current literature on high-quality and culturally responsive STEM ASP practices and 2) informing ASP staff development training. Overall, this mixed methods project will provide critical and rich information on the ways that ASPs can effectively deliver on its promise of promoting positive development for all youth, especially URM youth who may need and benefit from these spaces the most. The invaluable insight garnered from this study will be disseminated to traditional academic audiences to advance knowledge, as well as to local, state, and national organizations to inform the larger landscape of practice in STEM ASPs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Vincent Yu Sandra Simpkins
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Museum of Science, Boston (MOS) and Boston University (BU) will conduct a Pilot and Feasibility Study project that leverages the current Living Laboratory (LL) model and expand it to engage high school students (teens) in experimental psychology research, science communication and science education activities. In LL, which is now an extensive network of museums and university researchers across the country, scientists and museum staff collaborate to engage children in studies on the museum floor and educate caregivers about the research. Multi-site implementation and evaluation of LL has also documented positive impacts for undergraduate researchers. Many sites are eager to extend these benefits to high school students by engaging them as practitioners within the model and by providing them with opportunities to engage in current research, education and communication, thereby helping to foster stronger youth identities with science and its applications in society. This project expands a ten-year LL partnership between MOS and BU to: 1) pilot a program in which high school students both conduct scientific research and engage the public in learning about science; 2) explore strategies for museums and universities to collaboratively engage, support and mentor high school students in science research, communication and education activities; 3) document curricular, other programmatic, and evaluation materials; and 4) convene professional participants to provide feedback on pilot materials, and assess the viability of implementing similar programs at additional sites. Guided by developmental evaluation, these activities will generate knowledge for the field, and act to increase professional capacity to integrate experiences for teens at multiple LL sites in future projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Becki Kipling Peter Blake Rachel Fyler Katie Todd Ian Campbell Tess Harvey Owen Weitzman Allison Anderson
resource project Professional Development and Workshops
For the United States to maintain its leading role on the world economic stage, it is essential to strengthen the American workforce in science, technology, engineering, and mathematics (STEM). Our current prosperity and our future success hinge on recruiting, training, and employing the creative and industrious STEM professionals who drive the innovation economy. Strengthening the American STEM workforce depends, in part, on broadening participation to students from demographics that have traditionally been underrepresented in STEM. This NSF INCLUDES Launch Pilot project will foster recruitment, training, and employment for indigenous STEM students, where the term "indigenous" comprises the terms Native American, American Indian, Alaskan Native, and Hawaiian Native. Specifically, this project will support the design and development of a first-of-its-kind network focused on environmental stewardship of indigenous lands. The network will comprise both tribal and government partners and will be organized by three faculty at the University of Colorado-Denver. Student recruitment, training, and employment will be organized around the unifying principle of land stewardship. The focus on land stewardship has been selected not only because it demands the expertise of STEM professionals, but also because land stewardship is among the top motivations for indigenous students considering STEM careers. Accordingly, this work is important on several fronts: It addresses the recognized need for STEM professionals; it broadens participation to students from underrepresented groups; and it provides a test bed for collective action by a first-of-its-kind network of tribal, government, and university partners.

The proposed network will work together to design, deploy, and debug a unique educational program giving students an opportunity to train for employment as tribal liaisons in the environmental field. In particular, this program will address the need for culturally-sensitive, scientifically-trained individuals who can serve as tribal liaisons between tribal and non-tribal organizations, which will allow them to prevent, minimize, or manage environmental incidents through their understanding of STEM principles and organizational dynamics. All students in this educational program will earn a regular four-year STEM degree, but a key feature of the program is that they will also participate in training and internships designed to provide background with nontechnical matters such as cultural awareness, environmental regulations, and organizational dynamics. Additionally, this educational program is designed to support recruitment of indigenous students by (1) providing a clear vision of a high-impact, culturally-relevant professional career and by (2) providing a cultural connection with obtaining a college degree. Taken together, the network aims to increase enrollment, retention, graduation, and alumni activity by indigenous students. Best practices and strategies for collective impact will be used to document achievement of the network in increasing the enrollment, retention, graduation, and alumni activity of indigenous students in higher education and in STEM careers. Continuous feedback will be collected to assess partner engagement and durability, and student satisfaction, performance, and progress. The network is expected to be sustainable because it addresses a demonstrated need; it is expected to be scalable because scientifically aware, culturally-sensitive individuals who can serve as tribal liaisons are needed not only regionally, but nationally.
DATE: -
TEAM MEMBERS: Timberley Roane David Mays Rafael Moreno-Sanchez Brenda Allen Grace RedShirt Tyon
resource project Professional Development, Conferences, and Networks
This NSF INCUDES Design and Development Launch Pilot will increase the recruitment, retention, and matriculation of racial and ethnic minorities in STEM Ph.D. programs contributing to hazards and disaster research. Increasing STEM focused minorities on hazards mitigation, and disaster research areas will benefit society and contribute to the achievements of specific, desired societal outcomes following disasters. The Minority SURGE Capacity in Disasters (SURGE) launch pilot will provide the empirical research to identify substantial ways to increase the underrepresentation of minorities in STEM disciplines interested in hazards mitigation and disaster research. Increasing the involvement of qualified minorities will help solve the broader vulnerability concerns in these communities and help advance the body of knowledge through the diversity of thought and creative problem solving in scholarship and practice. Utilizing workshops and a multifaceted mentorship program SURGE creates a new model that addresses the diversity concerns in both STEM and disaster fields, and make American communities more resilient following natural disasters. This project will be of interest to policymakers, educators and the general public.

The Minority SURGE Capacity in Disasters (SURGE) NSF INCLUDES Design and Development Launch Pilot will enhance the social capital of racial and ethnic minority communities by increasing their networks, connections, and access to disaster management decision-making among members of their community from STEM fields. The four-fold goals of SURGE are to: (1) increase the number of minority graduate researchers in STEM fields with a disaster focus; (2) develop and guide well-trained, qualified disaster scholars from STEM fields; (3) provide academic and professional mentorship for next generation minority STEM scholars in hazards mitigation and disaster research; and (4) develop professional and research opportunities that involve outreach and problem solving for vulnerable communities in the U.S. The SURGE project is organized as a lead-organization network through the University of Nebraska at Omaha and includes community partners. As a pilot project, SURGE participation is limited to graduate students from research-intensive universities across the country. Each student will attend workshops and training programs developed by the project leads. SURGE investigators will conduct project evaluation and assessment of their workshops, training, and mentorship projects. Results from evaluations and assessments will be presented at STEM and disaster-related conferences and published in peer-reviewed academic journals.
DATE: -
TEAM MEMBERS: DeeDee Bennett Lori Peek Terri Norton Hans Louis-Charles