Skip to main content

Community Repository Search Results

resource project Professional Development and Workshops
This is an "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot that will implement a plan to assess the feasibility of a strategy designed to ensure high levels of improvement in K-12 grade students' mathematics achievement. The plan will focus on an often-neglected group of students--those who have been performing at the lowest quartile on state tests of mathematics, including African American, Hispanic, Native American, students with disabilities, and those segregated in urban and rural communities across the country. The project will draw on lessons learned from the nation's Civil Rights Movement and a community-organizing strategy learned during the struggle to achieve voting rights for African Americans. The Algebra Project (AP) is a national, nonprofit organization that uses mathematics as an organizing tool to ensure quality public school education for every child in America; it believes that every child has a right to a quality education to succeed in this technology-based society. AP's unique approach to school reform intentionally develops sustainable, student-centered models by building coalitions of stakeholders within the local communities, particularly the historically underserved populations. The AP works to change the deeply rooted social attitudes that encourage the disenfranchisement of a third of the nation's population. It delivers a multi-pronged approach to build demand for and support of quality public schools, including research and development, school development, and community development education reform efforts through K-12 initiatives.

The Algebra Project and the Young People's Project (YPP) will join efforts to bring together over 70 individuals and organizations, including 17 universities of which 8 are Historical Black Colleges and Universities, school districts, mathematics educators, and researchers to examine their experiences, and use collective learning to refine and hone strategies that they have piloted and tested to promote mathematics inclusion. The role of YPP in the proposed project will be to organize and facilitate the youth component, such that project activities reflect the language and culture of students, continuously leveraging and building upon their voice, creative input, and ongoing feedback. YPP will conduct workshops for students organized around math-based games that provide collective experiences in which student learning requires individual reflection, small group work, teamwork and discussion. The proposed work will comprise the design of effective learning opportunities; building and supporting a cadre of teachers who can effectively work with students learning under the proposed approach; using technologies to enhance teaching and learning; and utilizing evaluation and research to drive continuous improvement. Because bringing together an effective network with diverse expertise to collaborate towards national impact requires expert facilitation processes, the project will establish working groups around three major principles: (1) Organizing from the bottom up through students, their teachers, and others in local communities committed to their education, allied with individuals and organizations who have expertise and dedication for achieving the stated goals, can produce significant progress and the conditions for collective impact; (2) Effective learning materials and formal and informal learning opportunities in mathematics can be designed and implemented for students performing in the bottom academic quartile; and (3) Teachers and other educators can become more proficient and more confident in their capacity to produce students who are successful in learning the level of mathematics required for full participation in STEM. The working groups will also be tasked to consider two cross-cutting topics: (a) the communication structures and technologies needed to operate and expand the present network, and to create the "backbone" and other structures needed to operate and expand the network; and (b) the measurements and metrics for major needs, such as assessing students' mathematics literacy, socio-emotional development in specified areas; teachers' competencies; as well as the work of the network. The final product of this plan will be a "Theory of Collective Action and Strategic Plan". The plan will contain recommendations for collective actions needed in order for the current network to coordinate, add appropriate partners, develop the needed backbone structures, and become an NSF Alliance for national impact on the broadening participation challenge of improving the mathematics achievement. An external evaluator will conduct both formative and summative aspects of this process.
DATE: -
TEAM MEMBERS: Robert Moses Nell Cobb Gregory Budzban Maisha Moses William Crombie
resource project Professional Development, Conferences, and Networks
The American Association for the Advancement of Science (AAAS) and the National Science Foundation (NSF) will continue its collaboration in providing to early- and mid-career scientists and engineers experiential professional development and public service fellowships via the AAAS Science and Technology Fellowship Program. Consistent with the immersion model adopted by AAAS, Fellows at NSF will be selected annually through a competitive process and placed in organizations throughout the Foundation. Fellows will work with NSF staff on a broad range of activities in order to gain insight into how national science and technology policy goals are translated into and reflected by NSF's mission and strategic goals and how and by whom national science and technology policy is driven, shaped and prioritized. NSF fellowship assignments are designed to: educate and expose Fellows to NSF programmatic planning, development and oversight activities in all fields of fundamental research via hands-on engagement; utilize the Fellows' expertise on projects that apprise NSF officials in areas of mutual interest to the Fellow and the host organization; and provide developmental opportunities to inform future career decisions. The program includes an orientation on executive branch and congressional operations, as well as a year-long suite of knowledge- and skill-building seminars involving science, technology and public policy within the federal as well as NSF contexts.

In the long-term, the AAAS Fellowship program seeks to build leadership capacity for a strong national science and engineering enterprise. Upon completion of the Fellowship, Fellows will have gained: a broader understanding and increased insights about the development and execution of federal-level science, technology, engineering and mathematics policies and initiatives as well as how policy and science intersect; enhanced skills in communicating science to support policy development; and a greater capacity to serve more effectively in future leadership roles in diverse environments, including public and policy arenas, academia and the private sector. The ultimate outcome of the Fellowship program experience -- policy savvy science and engineer leaders who understand government and policymaking and are well-trained to develop and execute solutions to address the nation's challenges.
DATE: -
TEAM MEMBERS: Olga Francois Cynthia Robinson
resource project Museum and Science Center Programs
There is a growing need for citizens to be able to work with data and consider how data is represented. This work employs a design, make, play framework to create data modeling learning experiences for young children and their caregivers in an informal setting. The project develops and tests a curriculum for a workshop series for 5-8 year old children to engage them in playful exploration of data modeling. Children engage in data collection, data representation, and data analysis by drawing on their own experiences of museum exhibitions. The curriculum supports developing children's interest and engagement with data science and data literacy, which are foundational knowledge for a range of STEM careers and disciplines. This project advances efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM).

The project is grounded in a theoretical framework for young children's learning that focus on playful exploration, design, and building on children's own experiences and questions. The research examines how the curriculum needs to be designed to support families in data modeling, foster engagement in data modeling by both younger (ages 5-6) and older (ages 7-8) children, and provide evidence of active approaches to learning about STEM. The design and development project tests and investigates the materials using a design-based research framework. Children who participate in the workshop series should increase their confidence in solving problems, taking initiative, and drawing on available resources to pursue their own questions and respond to novel challenges. Data collected includes interviews with participants, artifacts of children's work throughout the series, and an observational instrument to document families' problem solving, persistence, and engagement with data science concepts.
DATE: -
TEAM MEMBERS: Katherine McMillan Culp ChangChia James Liu Janella Watson Delia Meza Kaitlin Donnelly Susan Letourneau Laycca Umer Catherine Cramer Stephen Uzzo John Archacki
resource project Informal/Formal Connections
This proposal was submitted in response to EHR Core Research (ECR) program announcement NSF 15-509. The ECR program of fundamental research in STEM education provides funding in critical research areas that are essential, broad and enduring. EHR seeks proposals that will help synthesize, build and/or expand research foundations in the following focal areas: STEM learning, STEM learning environments, STEM workforce development, and broadening participation in STEM. The ECR program is distinguished by its emphasis on the accumulation of robust evidence to inform efforts to (a) understand, (b) build theory to explain, and (c) suggest interventions (and innovations) to address persistent challenges in STEM interest, education, learning, and participation.

The study will investigate the processes that connect gestures and mathematics learning. Gestures are an important yet under-investigated aspect of mathematics teaching. They can influence students' memory and understanding of mathematical representations. The series of studies will examine students' learning of the concept of mathematical equivalence by testing instruction that incorporates commonly used verbal explanations and gestures. Mathematical equivalence includes understanding the meaning of the equal sign and determining if two expressions are equal. Second and third grade children will be participants. Of particular interest in the studies is the influence of gestures on preexisting knowledge of procedures, how gestures support learning beyond emphasizing information and direct learners' attention, and the creation of procedural knowledge.

The series of experimental studies will examine the mechanisms that connect gestures and procedural understanding of mathematical equivalence. The studies begin in the first phase with examining how gesture is connected to procedural knowledge of mathematical equivalence. Subsequent studies investigate how gesture functions as a mechanism for learning beyond emphasizing or directing attention to relevant information. Data collected will students' responses to equivalence problems and eye tracking data to follow whether students are looking from one side of the equal sign to the other. In the second phase of the work, the studies will examine how gesture has beneficial effects on learning more generally in mathematics. Working memory will be assessed in order to examine the role of gesture across different individuals. Fraction tasks will be used to examine the generalization of the previous results regarding gestures to other mathematics concepts.
DATE: -
TEAM MEMBERS: Kimberly Fenn Susan Cook
resource project Media and Technology
Purpose: Purpose: This project team will fully develop and test Teachley Connect, a platform that syncs a variety of third-party math games to give elementary schools formative assessment data and intervention support. Mobile math games provide opportunities for students to access educationally-meaningful content in and out of the classroom and to supplement instruction. There are a number of examples of math apps that show promise for supporting and assessing student learning in different areas of mathematics, yet few apps in the marketplace provide meaningful data that teachers can use. Many games provide an overall score at the end of the session, but do not help teachers know what skills students are struggling with or how to provide additional support.

Project Activities: During Phase I, (completed in 2015), the team developed a prototype of Teachley Connect, which enables the secure transfer of game and learning data between third-party math games and the Teachley servers. At the end of Phase I, researchers completed a pilot study with 20 students and two teachers and demonstrated that the prototype operated as intended with important trends indicating that the system promotes student engagement and less time spent seeking help. In Phase II, the team will add additional third party math apps to the platform, strengthen the backend management system to tag user game-play data, and build out the teacher reporting dashboard to inform instruction and identify apps to address particular student and class needs. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Teachley Connect for teachers to use formative assessment data to inform classroom practice, select apps to address individual student needs, and support student math learning. The study will include 12 (grade K to 3) classrooms and randomly assign them into one of three groups: 1) apps only, 2) Teachley-enabled apps, or 3) Teachley-enabled apps + data. Researchers will compare pre-and-post scores of student's math learning, classroom observations, and teacher surveys/interviews.

Product: Teachley Connect will be a mobile tablet-based platform that uses games to give elementary schools rich formative assessment data and intervention support. Teachley Connect will permit students to continue playing exactly where they left off on any tablet. The platform will also connect apps into a single teacher dashboard, providing teachers detailed reports on student performance across games, with insights for informing individual or whole group instruction. The platform will include teacher resources to support the alignment of game play with learning goals and to support implementation.
DATE: -
TEAM MEMBERS: Kara Carpenter
resource project Media and Technology
Purpose: The team will fully develop and test three puzzle-based math games that adaptively assess and support student learning in middle school classrooms. A principle objective of middle school math is to prepare students for more complicated and advanced STEM topics, providing the foundation for a wide variety of college majors and careers. Students who struggle in math in grade 5 and 6 are more likely to show deficits as coursework turns to topics in algebra. However, in many classrooms, commonly used progress monitoring instruments often do not adjust in ease or difficulty based on student performance, and do not provide data teachers can use to tailor instruction to meet the needs of students.

Project Activities: During Phase I (completed in 2015), the team developed a prototype of an adaptive engine for Wuzzit Trouble, a previously developed app where players rotate a virtual wheel to solve puzzles by applying number sense mathematical strategies. The engine tailors gameplay to the skill level of individual students in real time, providing tips and support to students having difficultly or by making challenges more difficult for those who master puzzles. The research team conducted a pilot study at the end of Phase I in order to test the prototype. A little more than 200 grade 5 and 6 students and six teachers participated over two weeks. Researchers found that the prototype functioned as intended and that teachers successfully used the game before, during, and after class as a supplement to instruction. They learned that 65% of students enjoyed using the prototype and 46% indicated that the game adjusted to the right level of difficulty during gameplay. In Phase II, the team will develop two new games on topics including algebraic thinking and problem solving, will strengthen and validate the adaptive engine, and will build out the dashboard to report formative and summative assessment results. After development is complete, the researchers will carry out a larger pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the three games to improve student learning over a 9-week period. Thirty-two grade 5 and 6 math classrooms from 16 schools will participate. One classroom from each school will be randomly assigned to use the games and half will continue with business-as-usual procedures. The researchers will compare pre-and-post scores for student learning on standardized measures of pre-algebra topics. They will also track teacher implementation.

Product: The final product will include a suite of three app-based puzzle games aligned to national math standards for number sense, algebraic thinking, and problem solving. The games will be designed for use in grade 5 and 6 classrooms where students develop and apply content expertise to solving challenges. The games will include an adaptive engine that assesses and adjusts content based on student level of performance, a back-end system to organize data, and a reporting dashboard to present measures of student performance, persistence, and creativity. The project team will also develop teacher resources for suggesting how to incorporate games and activities into classroom instructional practice to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Randy Weiner
resource project Media and Technology
In prior research and development, the project team and partners developed Cyberchase, a multimedia story-based series for students to practice and learn math. Researchers will develop and test a prototype of a mobile app-based fractions game to be integrated within the multimedia series. The prototype will adjust to students of different skill levels, and will present fractions in different representations (pictures, numbers, and words) to support different modes of learning. In the Phase I pilot, researchers will work with two grade 3 classrooms, and will examine whether the prototype functions as planned, if teachers are able to integrate the game into classroom practice, and whether the prototype shows promise for improving student learning of fractions.
DATE: -
TEAM MEMBERS: Gary Goldberger
resource research Public Programs
Front-line staff are an integral part of the visitor experience at museums and science centers across the country, facilitating activities and programs, leading classes, and more. But do these staff make a difference for visitor learning? And what are the most effective facilitation strategies and approaches? In 2013, the Oregon Museum of Science and Industry (OMSI) received funding from the National Science Foundation for a three-year study, Researching the Value of Educator Actions for Learning (REVEAL), to begin to address these questions. Building on the Design Zone exhibition, REVEAL
DATE:
resource evaluation Media and Technology
PEEP and the Big Wide World/El Mundo Divertido de PEEP is a bilingual, NSF- funded public media project that uses animation, live-action videos, games, mobile apps, hands-on science activities to motivate preschool-age children to investigate the world around them. Online, PEEP extends children’s science and math learning with a mobile-friendly website that offers games, videos, and hands-on activities, as well as a collection of 15 apps. PEEP is also reaching children in preschool classrooms and family/home childcare settings via the PEEP Science Curriculum, which provides resources for a
DATE:
TEAM MEMBERS: Christine Paulsen Ashley Pereira Lisa Burke
resource project Media and Technology
Mathematics is the foundation of many STEM fields and success in mathematics is a catalyst for success in other scientific disciplines. Increasing the participation of women and other under-represented groups in the mathematics profession builds human capital that produces a diverse pool of problem solvers in business and industry, research mathematicians, faculty at all levels, and role models for the next generation. Existing support and enrichment programs have targeted women in mathematics at different stages in their undergraduate and graduate education, with different strategies to building community, creating a sense of belonging, and promoting a growth mind set. These strategies challenge some of the most common obstacles to success, including isolation, stereotype threat, not committing to mathematics early enough, and imposter syndrome. Acknowledging the diversity among women in terms of socio-economic background and educational background, this project proposes to examine the effectiveness of these programs through the lens of two primary questions: (1) Which elements of these programs are most critical in the success of women, as a function of their position along these distinct diversity axes?, and (2) which features of these programs are most effective as a function of the stage of the participant's career? These questions are guided by the rationale that a better understanding of, and improved pathways by, which programs recruit and retain undergraduate and graduate women in mathematics has the strong potential to increase the representation of women among mathematics PhDs nationwide.

This project seeks to increase and diversify the number of professional mathematicians in the United States by identifying and proliferating best practices and known mechanisms for increasing the success of women in mathematics graduate programs, particularly women from under-represented groups. The PIs on this proposal, all of whom are leaders of initiatives that have been active for nearly two decades, will work with experts in management, data collection and reporting, and communications to address the following three challenges: (1) develop a common system of measuring the effectiveness of each element in these initiatives; (2) develop a process for effective, collective decision making; and (3) create connections between existing activities and resources. This project is both exploratory research and effectiveness research. The project team first will explore the contextual factors that serve to support or inhibit female pursuit of mathematics doctorates by interviewing a variety of women who were undergraduate mathematics majors in the past, as well as current professional mathematicians. They then will use this information to better understand the most effective features of various current and past initiatives that are trying to increase the participation of women in advanced mathematics. A key stakeholder meeting will develop a process for effective, collective decision-making, to utilize what the project team learns from the interviews. The leadership team will develop a website with discussion board and social media components to highlight best practices and facilitate a virtual community for women interested in mathematics. Finally, a distillation of program elements and their targeted effectiveness will inform the selection of interconnected activities to test on a scalable model. These prototypes will be implemented at several sites chosen to represent a diversity of constituencies and local support infrastructure.
DATE: -
TEAM MEMBERS: Judy Walker Ami Radunskaya Ruth Haas Deanna Haunsperger
resource project Informal/Formal Connections
Demand for skilled workers in STEM industries is continuing to grow rapidly across the United States. At the same time, postsecondary completion rates in fields such as computer science and engineering lag far behind demand. Academically, calculus is the critical barrier to entry to high-growth, high-wage STEM careers for the 59% of community college students who enter at remedial math levels, greatly diminishing the candidate pool for careers in STEM disciplines. In California, for example, only 4% of community college students advance to calculus in 4 years and therefore never have a chance to begin to train for the STEM careers that dominate the state's economic landscape. This barrier diminishes the candidate pool for STEM careers falling disproportionately on two groups: (1) minority students who are overrepresented in remedial programs; and (2) female students who are underrepresented in higher-level math courses. To broaden participation and expand the pipeline of available STEM talent, the STEM Core Initiative (SCI) implements a model that includes an accelerated and contextualized math course sequence with intensive supportive services designed to serve underrepresented students. The cohort-based program moves students from intermediate algebra to calculus-readiness in two semesters (as opposed to two or more years). A prototype of the SCI model has been implemented at four colleges over the last three years and has resulted in a 20-30 percent increase in math course success rates for participants compared to students enrolled in a traditional math course track. The partnership replicates and scales SCI successes through an enhanced STEM Core pathway model to be implemented at 13 California community colleges and one large and diverse Maryland community college campus, directly serving more than 625 students. Further, as a workforce development program, SCI offers paid internships with leading national and regional employers in computer science and engineering and exposes students to high-growth, high-wage STEM career opportunities.

The one-year calculus-readiness and internship pathway for remedial students is a new approach in eleven of the partner colleges and utilizes a collective impact approach to align industry and workforce development partners. The partnership offers wrap around student support, accelerated and contextualized learning, and expanded high-quality work-based learning experiences including internships. Well-positioned employer partners (such as NASA and the federal energy labs) contribute to the development of a national strategy by assisting community colleges with course contextualization, providing career orientation, and hosting project-based internships. To advance research, SCI employs a comprehensive multiple methods plan to assess the effectiveness of the STEM Core intervention and identify and understand the effective practices that underpin successful implementation of the STEM Core at 14 community colleges in California and Maryland. The evaluation seeks to measure and understand the impacts of STEM Core on student learning, academic and industry engagement, academic momentum, math confidence, and commitment to STEM as well as an understanding of implementation and replication strategies that yield the greatest impact. National dissemination of the results showcase the successes of STEM Core and build capacity to replicate the model.
DATE: -
TEAM MEMBERS: Jim Zoval Frank Gonzalez Mark Eagan Courtney Brown Michael Venn Jim Zoval
resource project Public Programs
Utah Valley University (UVU) with partners Weber State University (WSU) and American Indian Services (AIS) are implementing UTAH PREP (PREParation for STEM Careers) to address the need for early preparation in mathematics to strengthen and invigorate the secondary-to-postsecondary-to-career STEM pipeline. As the preliminary groundwork for UTAH PREP, each partner currently hosts a PREP program (UVU PREP, WSU PREP, and AIS PREP) that identifies low-income, under-represented minority, first-generation, and female students entering seventh grade who have interest and aptitude in math and science, and involves them in a seven-week, three-year summer intensive program integrating STEM courses and activities. The course content blends skill-building academics with engaging experiences that promote a clear understanding of how mathematical concepts and procedures are applied in various fields of science and engineering. Courses are enhanced through special projects, field trips, college campus visits, and the annual Sci-Tech EXPO. The purpose of the program is to motivate and prepare participants from diverse backgrounds to complete a rigorous program of mathematics in high school so that they can successfully pursue STEM studies and careers, which are vital to advancing the regional and national welfare.

UTAH PREP is based on the TexPREP program that originated at the University of Texas at San Antonio and which was named as one of the Bright Spots in Hispanic Education by the White House Initiative on Educational Excellence for Hispanics in 2015. TexPREP was adapted by UVU for use in Utah for non-minority serving institutions and in regions with lower minority populations, but with great academic and college participation disparity. With NSF funding for a two-year pilot program, the project partners are building UTAH PREP through a networked improvement community, collective impact approach that, if demonstrably successful, has the ability to scale to a national level. This pilot program's objectives include: 1) creating a UTAH PREP collaboration with commitments to a common set of objectives and common set of plans to achieve them; 2) strengthening existing PREP programs and initiating UTAH PREP at two or three other institutions of higher education in Utah, each building a sustainable local support network; 3) developing a shared measurement system to assess the impact of UTAH PREP programs, adaptations, and mutually reinforcing activities on students, including those from groups that are underrepresented in STEM disciplines; and 4) initiating a backbone organization that will support future scaling of the program's impact.
DATE: -
TEAM MEMBERS: Daniel Horns Andrew Stone Violeta Vasilevska