Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
DATE: -
TEAM MEMBERS: Judy Nee Elizabeth Stage Dennis Bartels Lucy Friedman Jane Quinn Pam Garza Gabrielle Lyon Jodi Grant Frank Davis Kris Gutierrez Bernadette Chi Carol Tang Mike Radke Jason Freeman Bronwyn Bevan Leah Reisman Sarah Elovich Kalie Sacco
resource project Professional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE: -
TEAM MEMBERS: Stephen Madigosky William Keilbaugh Victor Donnay Bruce Grant Thomas Schrand
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Media and Technology
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
DATE: -
TEAM MEMBERS: Dean Cristol Christopher Andersen Lynn Sametz
resource project Professional Development, Conferences, and Networks
This pilot project establishes and implements a professional development model with teachers of Native American students by creating a culturally relevant science, technology, engineering and mathematics (STEM) teacher in-service model for 30 grade 4-6 teachers from schools from two nations in Utah. The in-service program relies on community advisory panels, current standards and best practices in science, mathematics and technology education, by implementing engineering and technology education activities as a means of teaching science and mathematics. The goal is to improve teacher preparation in science and mathematics for Native Americans by creating culturally relevant curriculum materials with the help of community advisory panels and providing each teacher participant with at least 100 hours of structured professional development. The long-range goal is to develop an in-service model that can be transported to other Native American nations and schools. STEM and education faculty, community teachers, parents and leaders, as well as, tribal elders are to work together to assure the professional development model and materials are developed in a culturally inclusive manner. The evidence-based outcome of this project is that Native American students effectively learn mathematics and science with the longer-term influence being improvement in student achievement.
DATE: -
TEAM MEMBERS: Kurt Becker James Barta Rebecca Monhardt
resource project Public Programs
The intent of this project is to use social network methods to study networks of afterschool and informal science stakeholders. It would attempt to create knowledge that improves afterschool programs access to informal science learning materials. This is an applied research study that applies research methods to improving access to and enactment of informal science education programs across a range of settings. The investigators plan to collect data from 600 community- and afterschool programs in California, conduct case studies of 10 of these programs, and conduct surveys of supporting intermediary organizations. The analysis of the data will provide descriptions of the duration, intensity, and nature of the networks among afterschool programs and intermediary agencies, and the diffusion patterns of science learning materials in afterschool programs. The project will yield actionable knowledge that will be disseminated among afterschool programs, intermediary organizations, funding agencies, and policymakers to improve the dissemination and support of afterschool science learning opportunities. The project is focused on free-choice settings where every day the largest numbers of children attend afterschool programs at schools and in other community settings. It seeks information about what conditions are necessary for informal science programs to significantly impact the largest possible number of children in these settings.
DATE: -
TEAM MEMBERS: Barbara Means Ann House Carlin Llorente Raymond McGhee
resource evaluation Public Programs
In 2005, the Vermont Center for the Book (VCB) received funding from the National Science Foundation (NSF) to develop and implement a program called What's the BIG Idea? to help librarians change their children's story hours to include more mathematics and science content and vocabulary. The project resulted in the creation of a professional development seminar; a Librarian Manual with guidelines, activities and other information; parent kits for families to take home and use to reinforce and extend learning in math and science; and a website filled with ideas, bibliographies, and other
DATE:
TEAM MEMBERS: Dawn Jaramillo Judy Northup Shelley H. Billig Vermont Center for the Book
resource evaluation Public Programs
August, 2009 Communities of Effective Practice, 2008-2009 Evaluation Abstract: The Communities of Effective Practice (CEP) project is a National Science Foundation (NSF)-funded project to develop a professional development model for supporting math and science instructional practices that are culturally responsive within American Indian communities. This report summarizes findings from the Year 3 evaluation (conducted during the 2008-2009 academic year) and discusses these findings within the context of the Years 1 and 2 evaluations. It presents key considerations for developing a Community
DATE:
TEAM MEMBERS: Gina Magharious Kasey McCracken Utah State University
resource project Professional Development, Conferences, and Networks
The Franklin Institute Science Museum is planning, implementing, evaluating and disseminating the results of a 2.5 day conference entitled "Museums and New Family. Audiences - Building Relationships." The conference will be held in Philadelphia and involve a total of 75 professionals representing 25 museum/community programs, local community partners, advisers, and community partnership funders. Growing out of several initiatives over the past decade, the primary goal of the conference is to explore how museums and other informal science education organizations can develop and maintain long-term museum/community relationships to engage underserved families in informal STEM activities. Outcomes will include stronger relationships, a set of best practices and guidelines to be disseminated to the field, and the beginnings of a network.
DATE: -
TEAM MEMBERS: Minda Borun ANGELA WENGER Ronald Fricke Jacqueline Genovesi
resource project Media and Technology
The Cryptoclub: Cryptography and Mathematics Afterschool and Online is a five-year project designed to introduce middle school students across the country to cryptography and mathematics. Project partners include the Young Peoples Project (YPP), the Museum of Science and Industry in Chicago, and Eduweb, an award-winning educational software design and development firm. The intended impacts on youth are to improve knowledge and interest in cryptography, increase skills in mathematics, and improve attitudes towards mathematics. The secondary audience is leaders in afterschool programs who will gain an increased awareness of cryptography as a tool for teaching mathematics and adopt the program for use in their afterschool programs. Project deliverables include online activities, online cryptography adventure games, interactive offline games, a leader\'s manual, and training workshops for afterschool leaders. The project materials will be developed in collaboration with YPP staff and pilot tested in Year 3 at local afterschool programs and YPP sites in Chicago in addition to four national sites. Field testing and dissemination occurs in Year 4 at both local sites in Chicago and national locations such as afterschool programs, science centers, and community programs. Six 3-day training workshops will be provided (2 per year in Years 3-5) to train afterschool leaders. It is anticipated that this project will reach up to 11,000 youth, including underserved youth in urban settings, and 275 professional staff. Strategic impact resulting from this project includes increased awareness of cryptography as a STEM topic with connections to mathematics as well a greater understanding of effective strategies for integrating and supporting web-based and offline activities within informal learning settings. The Cryptoclub project has the potential to have a transformative impact on youth and their understanding of cryptography and may serve as a national model for partnerships between afterschool and mentoring programs.
DATE: -
TEAM MEMBERS: Janet Beissinger Susan Goldman Daria Tsoupikova Bonnine Saunders
resource project Professional Development, Conferences, and Networks
The National Resource Center of the 122 Osher Lifelong Learning Institutes (OLLIs), in collaboration with the Exploratorium and three regional OLLI sites at California State University-East Bay, University of South Florida, and University of Missouri-Columbia, explored, via this planning grant, a variety of scenarios for engaging target audiences of "third age" (50+) participants in informal STEM learning activities. Six collaborative partnerships between OLLIs and science centers in Maine, Virginia, California, Oregon, Montana and Pennsylvania were given $1000 each to create, test, and evaluate a STEM program/activity. The collaborative projects supported by the planning grant engaged 1186 older adults in ISE activities. Data collected from the partnership projects, and from national surveys of OLLIs and science centers, from a literature search, and from a CAISE Forum discussion were used to develop a full scale proposal to NSF in 2010 to fund a national Science Education Center for the Third Age. That proposal was declined but has been significantly reworked based on reviewer feedback and further efforts of the planning team and was submitted in its new form for the January 11, 2012 ISE deadline. This new project would be a largely virtual national Center based at the University of Southern Maine. The project would include creation of an interactive website, 30 funded OLLI/ Science Center collaborative partnerships nationwide ($10,000 each to create new ISE activities for older learners), and 3 regional/national summits to share results.
DATE: -
TEAM MEMBERS: Kali Lightfoot Bette Felton Aracelis Rogers Lucille Salerno
resource project Professional Development, Conferences, and Networks
The Oregon Museum of Science and Industry (OMSI) will create a 5,000 sq ft traveling exhibition designed to engage families with children ages 10-14 with concepts of algebra. Access Algebra will increase visitor awareness of the role of algebra in everyday life and help them to develop algebraic thinking skills. This exhibition will travel to 21 science centers, reaching some 3.5 million visitors on its national tour. It will be accompanied by an Educator's Guide, Family Guide, and complementary web activities. Access Algebra incorporates testing and implementation of an innovative model for professional development for museum exhibit, program, and interpretive staff. It links the exhibition tour to training at each venue designed to increase knowledge of algebra concepts and to develop facilitation skills in family math learning. The package includes workshops, training DVD, printed guide, Math Toolkit, and website support. Project partners include TERC, Oregon State University College of Education (OSU), and Blazer Boys & Girls Club (BBGC). The BBGC members will participate in exhibit development over an extended (12-week) period, helping to create an exhibition that will engage a target audience of underserved low-income youth. The strategic impact of Access Algebra derives from the development and testing of effective strategies for engaging audiences in exhibit-based informal math learning, along with increasing the capacity of the field for facilitating these kinds of experiences through a new model for professional development.
DATE: -