Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Informal/Formal Connections
This project is funded by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development. It responds to continuing concerns about racial and social inequities in STEM fields that begin to emerge in the early childhood years. The overarching goal of the project is to identify cultural strengths that support early science learning opportunities among Spanish-speaking children from immigrant Latin American communities, a population that is traditionally underrepresented in STEM educational and career pursuits. Building on a growing interest in the ways stories can promote early engagement in and understanding of science, this project will investigate the role of oral and written stories as culturally relevant and potentially powerful tools for making scientific ideas and inquiry practices meaningful and accessible for young Latinx children. Findings will reveal ways that family storytelling practices can provide accessible entry points for Latinx children's early science learning, and recommend methods that parents and educators can use to foster learning about scientific practices that can, in turn, increase interest and participation in science education and fields.

The project will advance knowledge on the socio-cultural and familial experience of Latinx children that can contribute to their early science learning and skills. The project team will examine the oral story and reading practices of 330 Latinx families with 3- to 5-year-old children recruited from three geographic locations in the United States: New York, Chicago, and San Jose. Combining interviews and observations, the project team will investigate: (1) how conversations about science and nature occur in Latinx children's daily lives, and (2) whether and to what extent narrative and expository books, family personal narratives, and adivinanzas (riddles) engender family conversations about scientific ideas and science practices. Across- and within-site comparisons will allow the project team to consider the immediate ecology and broader factors that shape Latinx families’ science-related views and practices. Although developmental science has long acknowledged that early learning is culturally situated, most research on early STEM is still informed by mainstream experiences that largely exclude the lived experiences of children from groups underrepresented in STEM, especially those who speak languages other than English. The proposed work will advance understanding of stories as cultural resources to support early science engagement and learning among Latinx children and inform the development of high quality, equitable informal and formal science educational opportunities for young children.
DATE: -
TEAM MEMBERS: Gigliana Melzi Catherine Haden Maureen Callanan
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

It has been well documented that under-resourced Latinx communities face persistent barriers to accessing quality STEM education and STEM careers, particularly in the field of engineering. For young children and their families from these communities, the development of executive function skills offers promising pathways to support educational success and prepare children to engage with STEM practices and content. Executive function skills, such as focusing attention, retaining information, and managing emotions are critical for children’s development and long-term success, and have been identified as central to engagement with STEM practices and content, whether in or out of school. However, much of the work on development of executive function skills to date has been conducted with White, middle-class children and has largely ignored the knowledge, values, or perspectives of other communities, including Latinx families. Similar gaps also exist in attention to culturally responsive approaches to using family-based STEM activities to support executive function skills. Taken together, there is a critical need to work with Latinx communities to re-imagine the intersection of STEM learning and executive function skills using equity-based frameworks. This Pilot and Feasibility project will develop and test a new participatory, dialogic method that leverages informal family engineering activities to support the development of executive function skills for preschool-age children from Latinx families. The combination of this proposal’s unique engagement of parents as research partners with the study of engineering and executive functions could lay the foundation for a promising program of future equity-focused research.

Three research questions will guide the study: 1) What knowledge, assets, and practices already exist within Latinx families related to these executive function skills? 2) What aspects of executive function skills can be supported through informal family engineering activities? and 3) What are promising design strategies for adapting informal family engineering activities to highlight family assets and support executive function skills for young children? To address these questions, the project team will engage Latinx parents in a dialogue series in which parents are central collaborators, sharing their in-depth perspectives and partnering with researchers to develop conceptual frameworks and new approaches. Data generated through these ongoing discussions will be analyzed using (a) qualitative, participatory approaches, including iterative co-development and refinement of emergent themes with parents, (b) detailed inductive coding of parent dialogue group discussions using grounded theory techniques, and (c) retrospective analysis at the end of the project. The parent dialogue series will be supported by a systematic literature review examining the intersections between engineering design, executive function, and the strengths and assets within Latinx families. The results of the exploratory research will include a (1) conceptual framework co-developed with parents that highlights promising opportunities and design strategies for using family engineering design activities to support executive function skills for preschool-age children from Latinx families and (2) research agenda outlining questions and priorities for future work that reflect the goals and interests of this community. Aligned with project’s equity approach, the team will work collaboratively with project partners and families for dissemination, focusing on amplifying community voices, sharing challenges and successes, and supporting improvements in the local community. Results will also be broadly shared with educators and researchers to advance knowledge and promote new equitable approaches to collaborating with parents from Latinx communities.

This Pilots and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Smirla Ramos-Montañez Scott Pattison Shauna Tominey
resource project Media and Technology
This project will scale up fully virtual or face-to-face STEM professional development to afterschool educators in both urban and rural settings. Given that many afterschool educators have little or no background in STEM education, there is demand for professional development that is effective, inexpensive, and accessible. This project will build national capacity in STEM education by developing the STEM skills of over 1,500 educators across multiple states and will ultimately impact over 31,000 under-represented youth in these areas. The project will also deliver robust materials through a free open-source mechanism, for use by educators anywhere and anytime. The project will broaden participation in STEM by engaging community educators in the rural parts of the nation, a critically under-represented group in STEM. It will also reach educators from low-income urban communities across three states and seven cities, targeted through strategic networks and partnerships, including organizations such as the YMCA, 4-H, and the National Afterschool Association.

This collaborative project is scaling the ACRES model (Afterschool Coaching for Reflective Educators in STEM). The model humanizes the virtual experience, making it social and engaging, and allows educators to learn, share, and practice essential STEM facilitation skills with a focus on making STEM relevant and introducing STEM careers to youth. In addition to enhancing the professional STEM skills of rural and urban educators, the project will create a national cohort of coaches with deep expertise in (i) converting in-person activities for youth into a highly engaging, choice-rich online format, (ii) engaging isolated informal educators in supportive professional learning communities, and (iii) coaching foundational research-based STEM facilitation skills that ensure these activities are pedagogically sound. A key part of this broad implementation project involves studying how to integrate an effective professional development program into afterschool organizations, including the ways afterschool programs adapt the materials to be culturally responsive to their local communities. The researchers will also study factors contributing to the longer-term sustainability of the program. The research will use surveys, interviews, direct observations, and case studies of participants to provide the field with valuable insights into scaling a program in the afterschool world.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for extending access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
resource project Informal/Formal Connections
HBCUs are critical to producing a diverse and inclusive workforce as they graduate a disproportionate number of African American future STEM workers and STEM leaders. Although the National Science Foundation is fully committed to diversity and inclusion, there has been little research to determine why Historically Black Colleges and Universities are not fully participating in the NSF STEM educational research opportunities. The project will investigate the challenges, needs and support for Historically Black Colleges and Universities (HBCUs) to succeed in applying for educational research support from the National Science Foundation (NSF). Participants will be recruited from 96 HBCUs that are eligible to apply for such funding and will include the wide range of college and university administration and faculty that are involved in the preparation of research projects and related applications for research funding. The investigation will focus primarily on the Division of Research on Learning in Informal and Formal Settings (DRL) within NSF. The investigation will: 1) determine the submission rate and funding success rate of HBCUs within the DRL funding mechanisms; 2) determine why a greater proportion of HBCUs are not successful in their applications of research or do not apply; and 3) determine what factors, such as institutional support, research expertise, and professional development, could lead to a larger number of research proposals from HBCUs and greater success in obtaining funding. The project has the potential to have significant influence on the national educational and research agenda by providing empirical findings on the best approach to support and encourage HBCU participation in DRL educational research funding programs.

This exploratory research project will investigate what changes and/or supports would contribute to significantly increasing the number of applications and successful grant awards for STEM educational research project proposed by HBCUs. The project has the following research questions: (1) What factors discourage participation of HBCUs in the DRL funding mechanisms and what are the best practices to encourage participation? (2) What approaches have been successful for HBCUs to obtain DRL funding? (3) What dynamic capabilities are necessary for HBCU researchers to successfully submit STEM proposals to NSF? (4) What changes would be helpful to reduce or eliminate any barriers for HBCU applications for DRL educational research funding and what supports, such as professional development, would contribute to greater success in obtaining funding? Participants will be recruited from the 96 eligible HBCUs and will include both individuals from within the administration (e.g., Office Sponsored Programs, Deans, VP, etc.) as well as from within the faculty. The research will collect variety of quantitative and qualitative data designed to support a comprehensive analysis of factors addressing the research questions. The project will develop research findings and recommendations that are relevant to faculty, administrators, and policymakers for improving HBCU participation in research funding opportunities. Results of project research will be widely disseminated to HBCUs and other Minority Serving Institutions (MSIs) through a project website, peer reviewed journals, newsletters, and conference presentations.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST), the Advancing Informal STEM Learning (AISL), and the Discovery Research PreK-12 (DRK-12) programs. These programs which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' and general public knowledge and interest in science, technology, engineering, and mathematics (STEM).
DATE: -
TEAM MEMBERS: Cynthia Trawick John Haynes Triscia Hendrickson Terry Mills
resource project Exhibitions
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.

The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:


RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?

Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?


RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?

Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.




The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.

This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Ronda Jenson Kelly Roberts
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
Across the United States, individuals, organizations, and communities are wrestling with a wide array of challenging and persistent science, technology, engineering, and mathematics (STEM)-related problems. A few examples include ensuring more equitable access to STEM careers; building capacity for rural libraries to support STEM learning; and supporting greater cyber literacy among youth. The good news is that thousands of individuals, organizations, and communities are coming up with great ideas for how to confront these problems; many of them supported by the NSF. Unfortunately, most will encounter significant roadblocks to success along the way, but not because of bad ideas. Most change agents falter along the lengthy and often convoluted pathway between idea and successful execution because they bump up against barriers they do not expect or know how to overcome. This Pilot and Feasibility Study will create Learning Solutions, a multi-platform program designed to support those people and entities engaged in work that cultivates the public's understanding of, engagement with, and interest in STEM fields and STEM-related information. First, the project will systematically identify the real, but often unspoken issues that individuals, organizations, and communities run into as they work to bring about significant and impactful STEM-related change. Then, the project will assemble, curate, and make digitally available a collection of tools, resources and strategies designed to help someone understand and resolve these kinds of issues if and when they arise. By better understanding the experiences of change agents, the challenges they face, and the creative learning solutions they enact, this project will ensure that more change agents successfully access the learning know-how they need, when they need it, in curated, easy-to-digest formats. This award is funded by the Advanced Informal STEM Learning program which contributes to STEM engagement and literacy, workforce development, and educational success via supporting new approaches to and evidence-based understanding of STEM learning in informal environments. Learning Solutions will build capacity and will help more professionals successfully bring more good ideas to fruition.

The target audience for this Pilot & Feasibility phase of Learning Solutions will be STEM professionals working at the intersection of STEM and society across diverse sectors. It will focus on change agents -- individuals who want to be or who already are engaged in community-based, action-oriented STEM-related change projects, whether acting on their own, within an organization, or as part of a broader community of organizations. To achieve the goal of making STEM-related change easier to accomplish, Learning Solutions will implement a multi-step process. With input from five Critical Advisors, 20 Key Informants, and ultimately hundreds of change agents, project staff will: 1) Utilize an iterative process of in-depth interviews and broadly disseminated surveys to identify the major understandings, skills and processes that current and past STEM-related change agents have experienced as impediments to their success; 2) Determine how best to describe and categorize these issues across diverse problem spaces; 3) Select twelve issues, based on which are the most frequently mentioned and/or perceived to be the most critical or challenging, and research and curate the best and most authoritative resources responsive to these dozen issues; and finally, 4) Use a variety of platforms (e.g., social media, traditional media, digital and in print publications, podcasts, panels, and group presentations) and utilization metrics to ensure effective digital delivery of potential solutions to the selected issues. By the project's end, we will have identified some of the key challenges the STEM-related change agents who work in communities across America regularly encounter, as well as the feasibility of developing a mechanism for helping those change agents discover preexisting and readily accessible resources to assist them in resolving those challenges.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: John H Falk Elysa Corin Stacey Sheehan
resource project Exhibitions
The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. An ongoing challenge to the design of effective STEM learning exhibits for diverse young children is the absence of reliable and evidence-based resources that designers can apply to the design of STEM exhibits that draw upon play as a child's primary pedagogy, while simultaneously engaging children with STEM content and processes that support development of STEM skills such as observation. To address these challenges, the project team will use a collaborative process in which learning researchers and informal STEM practitioners iteratively develop, design, and test the STEM for Play Framework that could then be applied to the design of STEM-focused exhibits that support play and STEM skill use among early learners.

This Research in Service to Practice project will address these questions: 1) What is a framework for play in early STEM learning that is inclusive of children's cultural influences?; 2) To what extent do interactions between early learners (ages 3-8) and caregivers or peers at exhibits influence the structure and effectiveness of play for supporting STEM skill development?; 3) How do practitioners link play to STEM skill development, and to what extent does a framework for play in early STEM learning assist in identifying types of play that supports early STEM skill development?; and 4) What do practitioners identify as best practices in exhibit design that support the development of STEM skills for early childhood audiences, and conversely, to what extent do practitioners perceive specific aspects of the design as influential to play? The project team will address these questions across four phases of study that will include (a) development of a critical research synthesis to inform the initial STEM for Play framework; (b) the use of surveys, focus groups, and interviews to solicit feedback from practitioners; (c) testing and revising the framework by conducting structured observations of STEM exhibits at multiple museums. The project team will use multiple analytic approaches including qualitative thematic analyses as well as inferential statistics. Results will be disseminated to children?s museums, science centers, and research communities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
This AISL Pilots and Feasibility project will study the data science learning that takes place as members of the public explore and analyze open civic data related to their everyday lives. Government services, such as education, transportation, and non-emergency municipal requests, are becoming increasingly digital. Generally, program workshops and events may be able to support participants in using such data to answer their own questions, such as: "How do City agencies respond to noise in my neighborhood?" and "How do waste and recycling services in my neighborhood compare with others?" This project seeks to understanding how such programs are designed and facilitated to support diverse communities in accessing and meaningfully analyzing data will promote innovation and knowledge building in informal data science education. The team will begin by summarizing best practices in data science education from a variety of fields. Next they will explore the design and impacts of two programs in New York City, a leader in publicly available Open Data initiatives. This phase will explore activities and facilitation approaches, participants' objectives and data literacy skills practice, and begin to identify potential barriers to entry and levels of participation. Finally, the team will build capacity for other similar organizations to explore and understand their impacts on community members' engagement with civic data. This pilot study will establish preliminary evidence of the effectiveness of these programs, and in turn, inform future research into the identifying and amplifying best practices to support public engagement with data.

This research team will begin by synthesizing data science learning best practices based on varied literatures and surveys with academic and practitioner experts.

Synthesis results will be applied as a lens to gather preliminary evidence regarding the impacts of two programs on participants' data science practices and understanding of the nature of data in the context of civics. The programs include one offered by the Mayor's Office of Data Analytics (MODA), which is the NYC agency with overall responsibility for the City's Open Data programs, and BetaNYC, a leading nonprofit organization working to improve lives through civic design, technology, and engagement with government open data. The research design triangulates ethnographic observations and artifacts, pre and post adapted surveys, and interviews with participants and facilitators. Researchers will identify programmatic metrics and adapts existing measures to assess various outcomes related to public engagement with data, including: question formulation, data set selection and manipulation, the use of data to make inferences, and understanding variability, sampling and context. These metrics will be shared through an initial assessment framework for data science learning in the context of community engagement with civic open data. Researchers will also begin to identify barriers to broader participation through literature synthesis, interviews with participants and facilitators, and conversations with other organizations in our networks, such as NYC Community Boards. Findings will determine the suitability of the programs under study and inform future research to identify and amplify best practices in supporting public engagement with data.

This project is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Oded Nov Camilia Matuck Graham Dove
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone