Skip to main content

Community Repository Search Results

resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource project Media and Technology
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong.

The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong.

STEM educators are eager to foster long term collaboration with each other, and with schools. At the same time, good working practice by schools, teachers, STEM educators and institutions that involves and engages local communities was discovered, showing the diversified modes of connection which could enhance the sustainability of STEM ecosystem.

We trust that this three-year study with its associated digital maps, provides a useful resource for schools, teachers, students, parents, STEM educators and education policy makers in Hong Kong.
DATE: -
TEAM MEMBERS: Siu Po Lee David Foster
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource research Media and Technology
Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show
DATE:
TEAM MEMBERS: Aaron Price Katherine Gean Claire Christensen Elham Beheshti Bryn Pernot Gloria Segovia Halcyon Person Steven Beasley Patricia Ward
resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by developing a suite of digital tools designed to support positive messaging around skill-based education and careers and to improve mentors' communication with middle school-aged youth mentees. Maintaining U.S. economic advantage requires attracting talent to high-growth, high-demand skill-based, STEM-related careers that are traditionally attained through Career and Technical Education (CTE). Replacing old negative perceptions with new, more accurate messages about CTE and then reaching youth with these messages before high school is essential. Career-focused mentoring is a vehicle for delivering these messages and supporting youth exploration of CTE as a possible path for their own lives. Investigators will explore the hypothesis that through strong connections between those best positioned to articulate industry needs (mentors) and those most receptive to filling that need (mentees), this project will improve youth awareness and interest in CTE and the rewarding careers that are available to them. Research and development activities will be carried out collaboratively in informal learning environments in Boston and New York City that serve middle school-aged youth from underrepresented communities, through career-focused mentoring programs. The project team, led by media producers of the WGBH Education Foundation, includes market researchers and communications strategists at Global Strategy Group, learning scientists at Education Development Center, and mentorship program partners at SkillsUSA, Learning for Life's Middle School Explorer Clubs, and Boy Scouts of America's Scoutreach. If promising, the career-focused mentoring programs of SkillsUSA, Learning for Life, and Boy Scouts of America will incorporate the messaging roadmap and digital tools to support their mentoring curricula, which impact greater than one million youth in each year.

In the first phase of research, investigators will study perceptions of STEM-focused CTE from a nationwide sample of 800 middle school-aged youth and 30 mentors from skill-based STEM industries. In the second phase, investigators will work with six program leaders and 30 mentors from SkillsUSA, Explorer Clubs, Scoutreach, and other mentoring programs to document the needs of mentors for support as they enter into the mentoring process. The third phase will engage mentorship program leaders and 36 mentors in the iterative development of a suite of digital tools that would support positive messaging around skill-based education and careers and that would improve mentors' communication with youth mentees. In addition, a pre-post mentorship program pilot study will explore the promise of the digital tools for effectively supporting mentor-mentee communications that improve youth awareness and interest in STEM-focused CTE and skill-based, STEM-related careers. Thirty six mentors and 288 of their youth mentees will participate in the pilot study. Data sources for research include interviews and surveys of program leaders, mentors, and mentees, as well as tracking mentor activity within the online digital tool environment. This research would advance knowledge of how mentors influence disadvantaged youth perceptions of and interest in CTE and skill-based, STEM career pathways, in which there is currently little evidence as to how mentor preparation shapes ability to positively impact youth outcomes. Major outcomes will include a) deeper understandings of youth and mentor perceptions of CTE and mentors' needs for supporting their work with mentees, b) a messaging roadmap and digital tools that prepare mentors for their work with middle school youth, and c) empirical findings regarding the potential of the digital tools for effectively supporting mentor-mentee communications that improve youth's awareness and interest in CTE and skill-based, STEM-related careers. Outcomes will be shared widely to research, education, and industry communities, locally and nationally, through social media, partner networks, conference presentations, and research publications. An advisory board will provide independent review on the project activities.
DATE: -
TEAM MEMBERS: Marisa Wolsky Hillary Wells
resource research Media and Technology
Access to high quality evaluation results is essential for science communicators to identify negative patterns of audience response and improve outcomes. However, there are many good reasons why robust evaluation linked is not routinely conducted and linked to science communication practice. This essay begins by identifying some of the common challenges that explain this gap between evaluation evidence and practice. Automating evaluation processes through new technologies is then explicated as one solution to these challenges, capable of yielding accurate real-time results that can directly
DATE:
TEAM MEMBERS: Eric Jensen
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.

The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE: -
TEAM MEMBERS: Shuchi Grover Marie Bienkowski John Stamper
resource project Media and Technology
This project, conducted by the University of Pittsburgh and the University of California, Berkeley, seeks to discover what makes middle school students engaged in science, technology, engineering, and mathematics (STEM). The researchers have developed a concept known as science learning activation, including dispositions, practices, and knowledge leading to successful STEM learning and engagement. The project is intended to develop and validate a method of measuring science learning activation.

The first stage of the project involves developing the questions to measure science activation, with up to 300 8th graders participating. The second stage is a 16-month longitudinal study of approximately 500 6th and 8th graders, examining how science learning activation changes over time. The key question is what are the influencers on science activation, e.g., student background, classroom activities, and outside activities.

This project addresses important past research showing that middle school interest in STEM is predictive of actually completing a STEM degree, suggesting that experiences in middle school and even earlier may be crucial to developing interest in STEM. This research goes beyond past work to find out what are the factors leading to STEM interest in middle school.

This work helps the Education and Human Resources directorate, and the Division of Research on Learning, pursue the mission of supporting STEM education research. In particular, this project focuses on improving STEM learning, as well as broadening participation in STEM education and ultimately the STEM workforce.
DATE: -
resource evaluation Media and Technology
The National Science Teachers Association (NSTA) and the Association for Science-­Technology Centers (ASTC), with support from the National Science Foundation (NSF), has launched an initiative to develop and distribute two pilot issues of a new resource for STEM education practitioners in both formal and informal (out-­of-­school) settings. An aim of the new resource is to better connect practitioners across education settings and the research and knowledge base about STEM learning. David Heil & Associates, Inc. (DHA) is serving in a co-­PI role on the grant to provide NSTA and ASTC with
DATE:
TEAM MEMBERS: Kelly Riedinger
resource project Media and Technology
Purpose: An estimated 5 to 8% of elementary school students have some form of memory or cognitive deficit that inhibits learning basic math. Researchers have identified several areas where children with math learning difficulties struggle. These include a strong sense of number facts to quickly and accurately perform operations on single digit numbers, the use of strategies to solve problems which have not yet been memorized, a sense to figure out whether or not an answer is reasonable, and self-monitoring to assess one's own efficacy and understanding. To support students with math learning difficulties in grades 1 to 4, this project team will develop a series of apps for touch-screen tablets that encourage single digit operational fluency, conceptual understanding, strategy awareness, and self-understanding.

Project Activities: During Phase I project in 2012, the research team developed a prototype of the single digit addition game, following an iterative process incorporating feedback from teachers and students having difficulty with math. Nineteen students participated in a pilot study, and the researchers found that the prototype functioned well and that users were engaged by the game. In Phase II, the team will build and refine the back end system, design and develop the teacher website, and create content for games in subtraction, multiplication, and division. Researchers will carry out a pilot test of the usability and feasibility, fidelity of implementation, and promise of the game to improve learning. Students in first to fourth grade identified by teachers as having the greatest difficulty with math will participate in the pilot study. Half of the 120 students participating in the pilot study will be randomly selected to play the game as a supplement to classroom learning whereas the other half will not have access. Students in the control group will be provided the games at the end of the study. Analyses will compare pre- and post-test math scores.

Product: The web-based game, MathFacts, will include a series of apps for touch-screen tablet computers to support math learning for 1st to 4th grade students with major or sometimes intractable learning difficulties. In the game, students will learn content through mini-lessons, engage with problems in practice and speed rounds, and then receive formative feedback on their performance. Students will use and manipulate blocks, linker tubes, number lines, and interact with engaging pedagogical agents such as parrots and sloths. Students will set goals, advance to more challenging levels, and engage in competition. The game will be self-paced and will provide individualized formative assessment scaffolding when students do not know the answer to a question. A teacher management system will support professional development and will produce reports to guide instruction. The intended outcomes from gameplay will include increased fluency, conceptual understanding, strategy awareness, self-assessment, and motivation of basic math.
DATE: -
TEAM MEMBERS: Kara Carpenter
resource project Media and Technology
Purpose: There is concern about a decline in mathematics achievement scores among U.S. students during the middle school years. For example, while 4th grade U.S. students rank 8th overall on an international mathematics comparison, by 10th grade U.S. student's drop significantly to 25th in the same comparison. Some researchers posit that much of this decline relates to how math is taught in the U.S. and with how students become less engaged as learners in middle school. The purpose of this project is to develop a web-based game to engage 7h grade students in a narrative-based story which will apply learning of content and skills aligned to the Common Core State Standards (CCSS) in mathematics.

Project Activities: During Phase I in 2012, the team developed a functioning prototype and conducted usability and feasibility research with fourteen 7th grade students. Researchers found that the prototype functioned as intended and that students were highly engaged while playing the game. In Phase II, the team will develop a fully-functional user interface with animated characters, interactivity across student users, narrative scripts and accompanying art assets, 36 problem sets, and student and teacher dashboards and databases. After development is complete, a pilot study will examine the usability and feasibility, fidelity of implementation, and the promise of the game to improve math learning. The study will include 120 students in 6 classrooms in three schools, with one classroom per school randomly assigned to use the game and the other half assigned to a business-as-usual control. Analyses will compare student scores on pre and post mathematics measures.

Product: Empires is a web-based game that addresses 36 pre-algebra Common Core State Standards in mathematics for 7th and 8th grades. The game follows a storyline in a recreation of an ancient empire which is at the brink of agricultural revolution and of becoming a trade economy. As students play the game, they engage in math-focused activities to drive the action, such as taxing citizens to learn ratios and proportions, allocating resources to learn percentages, and measuring the distance and time between a neighboring empire by applying the principles of the Pythagorean Theorem. As a socially networked game, students will interact with other students in the class to complete trades that lead to encounters with different math problems. The game will include two helpful, funny, advisors who will scaffold learning through mathematical discourse, arguing over the next most important thing to do. The game design architecture will work on a wide range of computers, including desktops and iPads. A teacher's guide and companion website will provide guidance to classroom activities that complement the game.
DATE: -
TEAM MEMBERS: Scott Laidlaw
resource project Media and Technology
Purpose: This project team will develop and test Zaption, a mobile and desktop platform designed to support educators in effectively and efficiently utilizing video (e.g., from YouTube, Vimeo, or their own desktop) as an interactive teaching and learning object. Personalized learning devices (e.g., smartphones, tablets) populated with video content provide opportunities for students to access educationally-meaningful content anywhere and anytime. Yet, video has yet to realize its potential as a learning tool in or out of the classroom. One reason for this is that watching video can be a passive experience for students, whereas learning requires active engagement. A second reason is that even if students are actively engaged while watching a video, there is no easy way to elicit student responses to a video. And finally, there is no easy way to feed student responses to teachers as formative assessment data to guide subsequent instruction.

Project Activities: During Phase I, (completed in 2014), the team expanded a pre-existing prototype by building a mobile app to enable anytime use and increase its functionality for teachers. At the end of Phase I, pilot research with 150 students in 7 classrooms demonstrated that the prototype operated as intended, teachers were able to integrate the videos within instructional practice, and students found the mobile app helpful and engaging. In Phase II, the team will add additional components to the prototype and will develop content-specific modules for use in high school physics classes. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Zaption for supporting student's physics learning. The study will include 32 Grade 10 physics classrooms, half of whom will be randomly assigned to use Zaption and half of whom will follow business as usual procedures. Analyses will compare pre-and-post scores of student's physics learning.

Product: Zaption will be a mobile and web-based platform to support the use of any video (e.g., from YouTube, Vimeo, or their own desktop) as a teaching and learning tool. Zaption will include an authoring engine where users can find and select video clips and easily insert interactive elements such as questions, discussions, and annotations into the videos. Users will then publish videos directly on Zaption's website, or on any learning management system or classroom website. Students will be able to view videos as homework or in class, respond individually to the questions and prompts, and get feedback on their responses. Teachers will use Zaption Analytics to receive immediate and actionable data showing whether students actually watched and engaged with a video, and how students responded to the questions and prompts.
DATE: -
TEAM MEMBERS: Chris Walsh