Skip to main content

Community Repository Search Results

resource project Exhibitions
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.

The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
DATE: -
TEAM MEMBERS: Tamara Moore Monica Cardella Senay Purzer Sean Brophy Morgan Hynes Tamara Moore Hoda Ehsan
resource project Public Programs
In order to improve science, technology, mathematics, and engineering (STEM) learning, it is crucial to better understand the informal experiences that young children have that prepare them for formal science education. Young children are naturally curious about the world around them, and research in developmental psychology shows that families often support children in exploring and seeking explanations for scientific phenomena. It is less clear how to link children's natural curiosity and everyday parent-child interaction with more formal STEM learning. This collaborative project will team researchers from the University of California, Santa Cruz, the University of Texas, and Brown University with informal learning practitioners at the Children's Discovery Museum, The Thinkery, and the Providence Children's Museum in order to investigate how family interaction relates to children's causal learning, as well as how modifications to museum exhibit design and facilitation by museum staff influence families' styles of interaction and increase children's causal learning. This project is funded by the Research on Education and Learning (REAL) program which supports fundamental research by investigators from a range of disciplines in order to deepen what is known about STEM learning.

The project team will examine how ethnically and linguistically diverse samples of parents and children engage in collaborative scientific learning in three children's museums across the U.S. The research will combine observational studies of parent-child interaction in a real-world setting with experimental measures of children's causal learning. The investigators will examine how children explore and derive explanations for museum exhibits about mechanical gear function and fluid dynamics. In this way, the researchers will investigate the relation between styles of parent-child interaction and children's causal learning. The team will also investigate novel ways of presenting material within the exhibits to facilitate exploration and explanation. They will explore how signage, conversations with museum staff, parents' attitudes towards learning in museum settings, and parents' own prior knowledge about the exhibits can influence the parent-child interaction and subsequent causal learning. The project will advance the basic research goal of advancing what is known about what affects children's science content learning. It will also advance the practice-oriented goal of developing new strategies for the design of science museum exhibits and make recommendations for how parents can better talk to their children about scientific phenomena.
DATE: -
TEAM MEMBERS: David Sobel Cristine Legare Maureen Callanan
resource project Public Programs
My Sky is a joint project between Boston Children’s Museum (BCM) and the Smithsonian Astrophysical Observatory (SAO). This three-year project was supported by NASA’s NRA/ROSES 2011 (NNX12AB91G) program, and resulted in the creation of My Sky, a 1,500 sq. ft. traveling astronomy exhibit designed for adults and children, ages 5 – 10. My Sky emphasizes authentic experiences that encourage the development of skills and content foundational to later appreciation and understanding of astronomical science. My Sky includes interactive explorations of objects and phenomena visible in the sky, encouraging families to “look up” not only when they visit the exhibit, but as a practice they might adopt in their everyday lives. This is all punctuated by real NASA data and assets, including a 5’ diameter model Moon created using the latest Lunar Reconnaissance Orbiter measurements; and high-resolution images from NASA’s Solar Dynamics Observatory satellite. This project also developed a series of public programs, museum staff training programs, and family workshops, all utilizing NASA resources and existing curriculum.
DATE: -
resource evaluation Exhibitions
My Sky is a NASA funded project, which developed a traveling exhibition on astronomy. Boston Children’s Museum (BCM) created the exhibition in collaboration with the Smithsonian Astrophysical Observatory (SAO). Formative and remedial evaluations were conducted at BCM while the summative evaluation took place at the first two venues following BCM: Stepping Stones Museum for Children (Stepping Stones) in Norwalk, CT and The Providence Children’s Museum (PCM) in Providence, RI. Formative evaluation of the My Sky exhibit was conducted between April 2013 and June 2014 to ensure that the components
DATE:
resource research Public Programs
This review of literature summarizes findings from current research on the development of empathy in childhood, and implications for developing zoo and aquarium programs that can strengthen children's sense of empathy. Key practices include: intentional framing of conversations about animals, modeling empathy - and providing opportunities for children to practice it, offering opportunities for direct interaction with animals, building children's understanding of the similarities and differences between the needs of humans and of other animals, and activating children's imagination to help them
DATE:
TEAM MEMBERS: Seattle Aquarium Kathryn Owen Kathayoon Khalil
resource research Public Programs
Three accredited zoos and aquariums in the Pacific Northwest are collaborating on a project aimed at developing tools to assess program effectiveness in encouraging children's empathy towards animals. This short briefing paper outlines the team's initial work to 1) gain a shared understanding and definition of the construct (empathy towards animals) and how it develops during childhood, and 2) review existing research on the link between empathy and beneficial action towards wildlife, and 3) summarize research findings on best practices towards encouraging empathy.
DATE:
resource project Public Programs
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
DATE: -
TEAM MEMBERS: Robin Meisner David Sobel Susan Letourneau Jessica Neuwirth Valerie Haggerty-Silva Chris Sancomb Camellia Sanford-Dolly Claire Quimby
resource research Public Programs
Puppet interviews can be helpful for getting feedback from young children in informal learning environments like libraries, museums, or afterschool programs. While puppets are a standby for interviewing children in clinical settings and are being used more frequently in some areas of qualitative research, they tend to be under-utilized in informal learning environments - natural settings for puppets because of their connections with play (Epstein et al., 2008). Our team developed a puppet interview protocol for the Gradient research project (Gender Research on Adult-child Discussion in
DATE:
resource research Media and Technology
This paper describes Synergies, an on-going longitudinal study and design effort, being conducted in a diverse, under-resourced community in Portland, Oregon, with the goal of measurably improving STEM learning, interest and participation by early adolescents, both in school and out of school. Authors examine how the work of this particular research-practice partnership is attempting to accommodate the six principles outlined in this issue: (1) more accurately reflect learning as a lifelong process occurring across settings, situations and time frames; (2) consider what STEM content is worth
DATE:
TEAM MEMBERS: John H Falk Lynn Dierking Nancy Staus Jennifer Wyld Deborah Bailey Bill Penuel
resource research Media and Technology
This study examined the validity of the Draw-A-Scientist Test (DAST), which is commonly used to capture students’ perceptions of scientists. Findings suggest that the DAST is not valid as a sole measurement. The originally identified stereotypical traits are no longer widely held by students.
DATE:
TEAM MEMBERS: Heather King
resource research Media and Technology
To support learning across settings, educators need to develop ways to elicit student interests and prior experiences. McClain and Zimmerman describe how, during outdoor walks at a nature center, families talked about prior experiences with nature, which were mostly from non-school settings. They used the prior experiences to remind, prompt, explain to, and orient one another during shared meaning-making activity.
DATE:
TEAM MEMBERS: Suzanne Perin
resource research Exhibitions
Dancu, Gutwill, and Hido describe a process for designing science museum exhibits to create playful learning experiences. They outline five characteristics of play: It is structured by constraints, active without being stressful, focused on process not outcome, self-directed, and imaginative. For each characteristic, they offer an example of iterative design using formative evaluation.
DATE:
TEAM MEMBERS: Josh Gutwill