Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource research Exhibitions
The open-access proceedings from this conference are available in both English and Spanish.
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Uduak Grace Thomas Bennett Attaway Lisa Chalik Jason Corwin Kevin Crowley Michelle Ciurria Colleen Cotter Martina Efeyini Ronnie Janoff-Bulman Jacklyn Grace Lacey Reyhaneh Maktoufi Bertram Malle Jo-Elle Mogerman Laura Niemi Laura Santhanam
resource project Media and Technology
DuPage Children’s Museum will conduct an in-depth, iterative evaluation of the museum’s Questioneers traveling exhibit and create a permanent 2,000 square-foot, bi-lingual Questioneers exhibit along with related programming that promotes inclusivity and ignites children’s interest in mathematics, science, engineering, and architecture. The exhibit and programming also will help reduce the impact of socioeconomic disparities that are known to discourage underrepresented and underserved populations from pursuing their interest in STEM fields. The exhibit and its related programming will feature characters, activities, and challenges from bestselling children’s books. The museum will coordinate exhibit design and fabrication with community partners.
DATE: -
TEAM MEMBERS: Kimberly Stull
resource evaluation Exhibitions
AlegreMENTE: Celebrando Conexiones Tempranas / Happy Brain: Celebrating Early Connections (hereafter referred to as AlegreMENTE) is a traveling exhibition designed for caregivers of children ages 0 to 5, seeking to convey research-based information that caregivers’ playful, loving interactions supports children’s brain development and has lifelong benefits. The bilingual, 1,500 square foot exhibition was developed by the Oregon Museum of Science & Industry (OMSI). For summative evaluation, the exhibition was installed and tested in two locations OMSI (a science center) and San Jose Children’s
DATE:
resource project Professional Development, Conferences, and Networks
Data science is ever-present in modern life. The need to learn with and about data science is becoming increasingly important in a world where the quantity of data is constantly growing, where one’s own data are often being harvested and marketed, where data science career opportunities are rapidly increasing, and where understanding statistics, data sources, and data representation is integral to understanding STEM and the world around us. Museums have the opportunity to play a critical role in introducing the public to data science concepts in ways that center personal relevance, social connections and collaborative learning. However, data science and statistics are difficult concepts to distill and provide meaningful engagement with during the brief learning experiences typical to science museums. This Pilot and Feasibility study brings together data scientists, data science educators, and museum exhibit designers to consider these questions:


What are the important data science concepts for the public to explore and understand in museum exhibits?
How can museum exhibits be designed to support visitors with diverse backgrounds and experiences to engage with these data science concepts?
What principles can shape these designs to promote broadening participation in data science specifically and STEM more broadly?



This Pilot and Feasibility project combines multidisciplinary expert convening, feasibility testing, and early exploratory prototyping around the focal topic of data science exhibits. Project partners, TERC, the Museum of Science, Boston, and The Tech Interactive in San Jose will engage in an iterative process to develop a theoretical grounding and practical guidance for museum practitioners. The project will include two convenings, bringing together teams of experts from the fields of data science, data science education and museum exhibit design. Prior to the first convening, an initial literature summary and a survey of convening participants will be conducted, culminating in a preliminary list of big ideas about data science. Periodically, participants will have the opportunity to rank, annotate and expand this list, as a form of ongoing data collection. During the convenings, participants will explore the preliminary list, share related work from the three disciplines, engage with related data science activities in small groups, and work together to build consensus around promising data science topics and approaches for exhibits. Participant evaluation will allow for iterative improvement of the convenings and the capture of missed points or overlooked topics. After each convening, museum partners will create prototypes that respond to the convening conversations. Prototypes will be pilot tested (evaluated) with an intentionally recruited group of families that includes both frequent visitors and those who are less likely to visit the museum; diversity in terms of race, languages and dis/ability will be reflected in selection. Pilot data collection will consist of structured observations and interviews. Results from the first round of prototyping will be shared with convening participants as a way to modify the list of big ideas and to further interrogate the feasibility of communicating these ideas in an exhibit format. Results from the convenings and from both rounds of prototyping will be combined in a guiding document that will be shared on all three partner websites, and more broadly with the informal STEM learning field. The team will also host a workshop for practitioners interested in designing data science exhibits, and present at a conference focused on museum exhibits and their design.
DATE: -
TEAM MEMBERS: Andee Rubin
resource project Exhibitions
The STEAM Para Todos project will transform a prominent exhibit in the Marbles Kids Museum into a vibrant space that fosters culturally relevant STEAM learning and exploration for all museum visitors, particularly the growing Hispanic, dual-language learner population in Wake County, N.C. The three-year project will involve research, testing, design, installation, and evaluation. The museum will work with the school system, STEM partners, the local arts community, and organizations engaged with the Hispanic community to develop the exhibit. Guiding the project will be a community of practice, comprised of museum professionals; researchers with expertise in STEAM education, dual language learners, and culturally responsive informal learning; partners from STEM businesses; creative arts organizations; the Wake County Public School System; and stakeholders from the exhibit's intended audience. Project partners include Wake County Public School System, Que Pasa, US2020, Visual Arts Exchange, North Carolina Society of Hispanic Professionals, and Google Fiber.
DATE: -
TEAM MEMBERS: Hardin Engelhardt
resource research Media and Technology
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
DATE:
TEAM MEMBERS: Diana Acosta Catherine Haden Kim Coin
resource research Exhibitions
This project engages families in engineering design challenges through a sustainability and biomimicry lens. Families advance their engineering proficiencies while learning from nature to create a livable future. This poster was presented at the 2021 NSF AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Marcie Benne Veronika Nunez
resource research Exhibitions
This poster was presented at the 2021 NSF AISL Awardee Meeting. Middle Ground Expanded (MGE), an interactive public placemaking project, showcases social-science concepts and transforms underutilized places into informal learning platforms. This broad implementation project is a collaboration between the Exploratorium, Urban Alchemy, San Francisco Recreation and Parks, and the San Francisco Public Library. Sixteen columns housing interactive, multilingual exhibits will help visitors explore how we think, feel, and interact with other people all within an immersive outdoor experience in the
DATE:
resource project Exhibitions
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.

This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Kevin Ponto David Gagnon
resource research Exhibitions
Awareness of a STEM discipline is a complex construct to operationalize; a learner’s awareness of a discipline is sometimes viewed through the lens of personal identity, use of relevant discourse, or knowledge of career pathways. This research proposes defining engineering awareness through a learner’s associations with engineering practices - fundamental processes involved in engineering such as identifying criteria and constraints, testing designs, diagnosing issues and assessing goal completion. In this study, a learner’s engineering awareness was determined by examining 1) their ability to
DATE:
resource research Exhibitions
This paper provides detailed descriptions of the goals, theoretical perspectives, context, and methods used in A study of collaborative practices at interactive engineering challenge exhibits (the C-PIECE Study), the first of two studies in the Designing Our Tomorrow (DOT) research program. The C-PIECE Study supported foundational and exploratory lines of inquiry related to engineering practices used by families engaging with design challenge exhibits. This paper describes the study background and methods as an anchor to four other products that detail these four specific lines of inquiry and
DATE: