Skip to main content

Community Repository Search Results

resource research Exhibitions
The open-access proceedings from this conference are available in both English and Spanish.
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Uduak Grace Thomas Bennett Attaway Lisa Chalik Jason Corwin Kevin Crowley Michelle Ciurria Colleen Cotter Martina Efeyini Ronnie Janoff-Bulman Jacklyn Grace Lacey Reyhaneh Maktoufi Bertram Malle Jo-Elle Mogerman Laura Niemi Laura Santhanam
resource research Media and Technology
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
DATE:
TEAM MEMBERS: Diana Acosta Catherine Haden Kim Coin
resource research Public Programs
Framing: Broadening participation and achieving equitable outcomes has been a core goal of the science museum field for over two decades. However, how to make progress has proven an intractable problem. Methods: Focusing on five organizations who officially committed to diversity, equity, access, and inclusion (DEAI) by participating in a national professional development program, the researchers investigate how science museums attempt to enact internally-focused change via a mixed methods case study. Findings: While these organizations considered a variety of structurally focused change
DATE:
resource research Public Programs
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks
DATE:
resource evaluation Public Programs
Children Investigating Science with Parents and Afterschool (CHISPA) was a collaboration between the Phillip and Patricia Frost Museum of Science, UnidosUS (formerly National Council of La Raza), and the ASPIRA Association that took place from 2014-18. CHISPA sought to address the disparity in science achievement among Latino and non-Latino children through local-level partnerships between science museums in metropolitan areas with growing Latino populations and UnidosUS and ASPIRA affiliate organizations serving the same communities through afterschool programs. Partners included the
DATE:
TEAM MEMBERS: Cecilia Garibay
resource project Exhibitions
This project responds to calls to increase children's exposure and engagement in STEM at an early age. With the rise of the maker-movement, the informal and formal education sectors have witnessed a dramatic expansion of maker and tinkering spaces, programs, and curricula. This has happened in part because of the potential benefits of tinkering experiences to promote access and equity in engineering education. To realize these benefits, it is necessary to continue to make and iterate design and facilitation approaches that can deepen early engagement in disciplinary practices of engineering and other STEM-relevant skills. This project will investigate how stories can be integrated into informal STEM learning experiences for young children and their families. Stories can be especially effective because they bridge the knowledge and experiences young children and their caregivers bring to tinkering as well as the conversations and hands-on activities that can extend that knowledge. In addition, a unique contribution of the project is to test the hypothesis that stories can also facilitate spatial reasoning, by encouraging children to think about the spatial properties of their emerging structures.

This project uses design-based research methods to advance knowledge and the evidence base for practices that engender story-based tinkering. Using conjecture mapping, the team will specify their initial ideas and how it will be evident that design/practices impact caregivers-child behaviors and learning outcomes. The team will consider the demographic characteristics, linguistic practices, and funds of knowledge of the participants to understand the design practices (resources, activities) being implemented and how they potentially facilitate learning. The outcome of each study/DBR cycle serves as inputs for questions and hypotheses in the next. A culturally diverse group of 300+ children ages 5 to 8 years old and their parents at Chicago Children's Museum's Tinkering Lab will participate in the study to examine the following key questions: (1) What design and facilitation approaches engage young children and their caregivers in creating their own engineering-rich tinkering stories? (2) How can museum exhibit design (e.g., models, interactive displays) and tinkering stories together engender spatial thinking, to further enrich early STEM learning opportunities? and (3) Do the tinkering stories children and their families tell support lasting STEM learning? As part of the overall iterative, design-based approach, the team will also field test the story-based tinkering approaches identified in the first cycles of DBR to be most promising.

This project will result in activities, exhibit components, and training resources that invite visitors' stories into open-ended problem-solving activities. It will advance understanding of mechanisms for encouraging engineering learning and spatial thinking through direct experience interacting with objects, and playful, scaffolded (guided) problem-solving activities.


This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Tsivia Cohen Kim Koin Natalie Bortoli Catherine Haden David Uttal Maria Marcus
resource research Public Programs
This poster was presented at the 2019 NSF AISL Principal Investigators Meeting. The project's goals were to: Use a series of 6 museum-facilitated family workshops at pre-kindergarten (pre-k) centers to promote informal STEM learning. Examine 3 conditions in which families and their children most benefit from “doing science and math” together. Focus on populations that are typically underrepresented in STEM fields – families experiencing poverty and families who speak English and/or Spanish at home
DATE:
TEAM MEMBERS: Tricia Zucker Cheryl McCallum Michael Assel Janelle Montroy Armando Orduna Gisela Trevino
resource project Exhibitions
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The Designing Our Tomorrow project will develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. The project seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices. The project focuses on girls aged 9-14 and their families and is co-developed with culturally responsive strategies to ensure the inclusion and influence of families from Latino communities. The project will conduct research resulting in theory-based measures of engineering proficiencies within an exhibit context and an exhibit facilitation model for the topic area of engineering. Based on the research, the project will develop an engineering design challenge framework for developing design challenges within an exhibit context. As the context for research, the project will develop a bilingual English/Spanish 2,000-square foot traveling exhibition designed to engage youth and families in engineering design challenges that advance their engineering proficiencies from beginner to more informed, supported by professional development modules and a host-site training workshop introducing strategies for facilitating family engineering experiences within a traveling exhibition. The project is a collaboration of Oregon Museum of Science and Industry with the Biomimicry Institute, Adelante Mujeres, and the Fleet Science Center.

Designing Our Tomorrow builds on a theory-based engineering teaching framework and several previous NSF-funded informal education projects to engage families in compelling design challenges presented through the lens of sustainable design exemplified by biomimicry. Through culturally-responsive co-development and research strategies to include members of Latino communities and provide challenges that highlight the altruistic, creative, personally relevant, and collaborative aspects of engineering, the Designing Our Tomorrow exhibition showcases engineering as an appealing career option for women and helps families support each other's engineering proficiencies. To better understand and promote engineering learning in an ISE setting, the project will conduct two research studies to inform and iteratively develop effective strategies. In the first study, measurement development will build on prior research and practice to design credible and reliable measures of engineering proficiency, awareness, and collaboration, as well as protocols for use in exhibit development and the study of facilitation at engineering exhibits, and future research. The second study will explore the effects of facilitation on the experience outcomes.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource research Public Programs
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS: Cheryl Juarez Verónika Núñez Exploratorium
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource evaluation Media and Technology
In March of 2016, the Exploratorium transmitted a live webcast of a total solar eclipse from Woleai, a remote island in the southwestern Pacific. The webcast reached over 1 million viewers. Evaluation reveals effective use of digital media to engage learners in solar science and related STEM content. Edu, Inc. conducted an external evaluation study that shows clear and consistent evidence of broad distribution of STEM content through multiple online channels, social media, pre-produced videos, and an app for mobile devices. IBM Watson did a deep analysis of tweets on eclipse topics that
DATE:
TEAM MEMBERS: Douglas Spencer Sasha Minsky Jediah Graham
resource project Public Programs
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez