Skip to main content

Community Repository Search Results

resource evaluation Public Programs
Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
DATE:
TEAM MEMBERS: Cecilia Garibay
resource project Media and Technology
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
DATE: -
TEAM MEMBERS: Leigh Peake
resource project Media and Technology
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE: -
TEAM MEMBERS: Julia Parrish Marco Hatch Selina Heppell
resource project Public Programs
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.

*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE: -
TEAM MEMBERS: Kristin Ruppel Clifford Montagne Lisa Lone Fight
resource research Media and Technology
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science—whether using knowledge or creating it—necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary
DATE:
TEAM MEMBERS: Catherine Snow Kenne Dibner
resource project Public Programs
Who We Are: A network of informal educators, climate scientists, learning scientists and local partners across four cities, dedicated to improving local understanding of and engagement with climate change science. Mission: CUSP aims to foster a network of climate-focused organizations to implement targeted, coordinated, and concentrated educational strategies that explore local climate impacts and community-level responses. What We Do: Unite local organizations committed to addressing the impacts of climate change into collaborative network Use latest climate science and learning science research to inform program development Connect urban residents’ personal interests to larger city systems impacted by climate change, and provide residents opportunities to explore city-wide responses Deliver programs that are targeted (aimed at specific audiences), coordinated (presenting consistent and clear information about the science of climate change), and concentrated (delivered many times, through many programs) Test the hypothesis that when people encounter the same science content in multiple settings, from multiple points of view, they are more likely to understand and remember important concepts What We Offer: A Community of Practice for local organizations, including training on best practices of climate communication and education Provide local organizations with current climate science impacting their city, and latest learning science research Opportunities for city residents to explore local impacts of climate change in every day settings, at neighborhood centers, at schools, online, and at city festivals. Opportunities for city residents to engage with local organizations in community-level responses to climate change
DATE: -
TEAM MEMBERS: The Franklin Institute Raluca Ellis Frederic Bertley Steven Snyder Radley Horton Kevin Crowley
resource project Media and Technology
The goal of this project is to advance STEM education in Hawaii by creating a series of educational products, based on NASA Earth Systems Science, for students (grades 3-5) and general public. Bishop Museum (Honolulu HI) is the lead institution. NASA Goddard Space Flight Center is the primary NASA center involved in the project. Partners include Hawaii Department of Education and a volunteer advisory board. The evaluation team includes Doris Ash Associates (UC Santa Cruz) and Wendy Meluch of Visitor Studies Inc. Key to this project: the NASA STEM Cohort, a team of six current classroom teachers whom the Museum will hire. The cohort will not only develop curricula on NASA earth science systems but also provide guidance to Bishop Museum on creating museum educational programming that best meets the needs of teachers and students. The overall goal of Celestial Islands is to advance STEM education in Hawaii through the use of NASA Earth Science Systems content. Products include: 1) combined digital planetarium/Science on a Sphere® program; 2) traveling version of that program, using a digital planetarium and Magic Planet; 3) curricula; 4) new exhibit at Bishop Museum on NASA ESS; 5) 24 teacher workshops to distribute curricula; 6) 12 community science events. The project's target audience is teachers and students in grades 3-5. Secondary audiences include families and other members of the general public. A total of 545,000 people will be served, including at least 44,000 students.
DATE: -
TEAM MEMBERS: Blair Collis Mike Shanahan
resource project Public Programs
This is a Broad Implementation proposal. Our goal is to create a vibrant, sustained community of practice around the established Café Scientifique New Mexico model for engaging high school teens in science, technology, engineering and math; scale-up will be accomplished via a national network of committed partners. The adult Cafe Scientifique model for engaging citizens in science has proven very effective and has been implemented widely. The interaction in a social setting with a scientist-presenter around a hot science topic is the key to the model’s success. With ISE funding, the model has been adapted by Science Education Solutions for the high school teen audience. Cafe Scientifique New Mexico, now starting its fifth year, has had documented success in providing teens with increased STEM literacy and a more realistic picture of scientists as real people leading interesting lives. Teens come to better understand the nature of science and are more likely to see the relevance of science to their lives. Scientists express strong satisfaction with the nature of our coaching and the resulting quality of their science communication. The program has been continually evaluated and improved, and is now ready for broad implementation. Intellectual Merit: Teenagers are the adult citizens and workforce of tomorrow. Teens are reaching a critical life juncture and are making choices that affect their future life style, life-long learning behaviors, and careers. Yet they are increasingly dropping out of the STEM pipeline in school. Even teens interested in STEM often know little about science and engineering careers and the nature of scientific research. Teen Cafés can play an important role in addressing these challenges. We have two major objectives: 1. Implement the Café Scientifique model of Teen Cafés in a national network of sites committed to adopting and adapting the program and validating its impacts with diverse audiences; and 2. Create a vibrant and sustainable community of practice comprised of ISE and STEM professionals interested in engaging teens in STEM through Teen Cafés. We have formed a core network of six initial partners: Southern Illinois University Edwardsville, Center for STEM Research, Education, and Outreach; The Florida Teen SciCafé Partnership; North Carolina Museum of Natural Sciences, Raleigh; Science Discovery, University of Colorado; The Pacific Science Center in Seattle; and The Missouri AfterSchool Network (MASN) – Project LIFTOF. We will add two more core partners in Year 3. The core partners will join the Teen Cafe Network in a staged fashion in years 1 - 3. Each will reach sustainability over a three-year funding period. Each node has a local area network of partners consisting of organizations that will host local Cafes; scientific organizations with potential presenters; schools and other organizations for recruiting teens; and entities capable of contributing to financial sustainability. The network will provide a structure for a dynamic, growing, and sustainable community of practice to implement the Teen Café model, in which high school teens will gain skills in scientific discourse, thought, and exploration. STEM professionals will gain improved skills for communicating with public audiences and a new perspective on their research from a broader societal perspective. ISE professionals will gain capacity to adapt, implement, test, and further disseminate the Teen Café model and increased capability for preparing STEM experts to communicate effectively with teen audiences, along with tools, resources, and expertise to help them do so. Science Education Solutions will manage the project and provide the resources to support the community of practice, while continuing Cafe Scientifique New Mexico as a ninth network node. We will stimulate intensive ongoing communication of lessons learned across the network as partners start up their Cafe programs; external observers will be able to watch the program unfold. Broader Impacts: We will build capacity for serving teens and effective communication of science in the broad ISE and STEM communities by encouraging and nurturing others wishing to start a Cafe program and join the network. We have partnered with 10 large science and science education organizations, each with its own extensive network, which will allow us to further propagate the Teen Cafe Network. They are: National Ecological Observatory Network (NEON). Nanoscale Informal Science Education Network (NISE Net), The American Institute of Physics (AIP), Science Cafés.org (to include NOVA), Science Festival Alliance, Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), Informalscience.org, Project Liftoff: Elevating Science Afterschool, ITEST Learning Resource Center, and The Center for Multiscale Modeling of Atmospheric Processes (CMMAP). Each partner will also target underserved and diverse teen audiences for their programs.
DATE: -
TEAM MEMBERS: Michelle Hall Michael Mayhew
resource project Media and Technology
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
DATE: -
resource project Public Programs
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE: -
TEAM MEMBERS: Andre Nel Yoram Cohen Hilary Godwin Arturo Keller Patricia Holden
resource project Public Programs
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
DATE: -
TEAM MEMBERS: Linda Kekelis