Skip to main content

Community Repository Search Results

resource research Exhibitions
Children spend 80% of their waking hours outside of school in the community. Deep inequities exist in access to high quality informal STEM learning opportunities (museums, zoos, safe and beautiful parks). Playful Learning Landscapes (PLL) infuses playful learning opportunities into everyday community spaces where families spend time. This project represents a strength-based model for designing play spaces deeply connected to communities’ cultural assets. This poster was presented at the 2021 NSF AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Andres Bustamante Vanessa Bermudez Julie Salazar Leiny Garcia Kreshnik Begolli Karlena Ochoa June Ahn Kathy Hirsh-Pasek Annelise Pesch Rigoberto Rodriguez Paola Padilla
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Persons who are deaf or hard of hearing are underrepresented in the STEM workforce. A key factor is lack of awareness of STEM careers or of examples of STEM professionals. SWS has developed 8 video stories for viewing at home or while attending a boys and girls club. Evaluation will provide new knowledge about design, use, and potential impact of the stories on our audience’s interest in pursuing STEM and possibly a STEM career.
DATE:
TEAM MEMBERS: Judy Vesel
resource research Informal/Formal Connections
This poster was presented at the 2021 NSF AISL Awardee Meeting. Head Start on Engineering is an ongoing initiative focused on empowering families to use engineering to help their children thrive. We aspire to collaborate as equal partners with the communities we serve and inform a more equitable vision for engineering education in our society.
DATE:
resource research Informal/Formal Connections
Identity development frameworks provide insight into why and to what extent individuals engage in STEM related activities. While studies of “STEM identity” often build off previously validated disciplinary and/or science identity frameworks, quantitative analyses of constructs that specifically measure STEM identity and its antecedents are scarce, making it challenging for researchers or practitioners to apply a measurement-based perspective of participation in opportunities billed as “STEM.” In this study, we tested two expanded structural equation models of STEM identity development
DATE:
TEAM MEMBERS: Heidi Cian Remy Dou
resource research Informal/Formal Connections
An individual's sense of themselves as a “STEM person” is largely formed through recognition feedback. Unfortunately, for many minoritized individuals who engage in STEM (science, technology, engineering, and mathematics) in formal and informal spaces, this recognition often adheres to long-standing exclusionary expectations of what STEM participation entails and institutionalized stereotypes of what it means to be a STEM person. However, caregivers, who necessarily share cultural backgrounds, norms, and values with their children, can play an important role in recognizing their children's
DATE:
TEAM MEMBERS: Heidi Cian Remy Dou Sheila Castro Elizabeth Palma-D'souza Alexandra Martinez
resource research Media and Technology
In July 2020, Dr. Brigid Barron and her team at Stanford University’s Graduate School of Education and the Joan Ganz Cooney Center convened a virtual workshop to mobilize a community of investigators to explore innovative methods for studying family and community learning during the pandemic. Participants included NSF RAPID-COVID grantees from Stanford University, University of Washington, and the University of Michigan. This report summarizes the strategies and insights generated at this workshop so that they may be shared among a wider network of researchers, practitioners, funders, and
DATE:
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

It has been well documented that under-resourced Latinx communities face persistent barriers to accessing quality STEM education and STEM careers, particularly in the field of engineering. For young children and their families from these communities, the development of executive function skills offers promising pathways to support educational success and prepare children to engage with STEM practices and content. Executive function skills, such as focusing attention, retaining information, and managing emotions are critical for children’s development and long-term success, and have been identified as central to engagement with STEM practices and content, whether in or out of school. However, much of the work on development of executive function skills to date has been conducted with White, middle-class children and has largely ignored the knowledge, values, or perspectives of other communities, including Latinx families. Similar gaps also exist in attention to culturally responsive approaches to using family-based STEM activities to support executive function skills. Taken together, there is a critical need to work with Latinx communities to re-imagine the intersection of STEM learning and executive function skills using equity-based frameworks. This Pilot and Feasibility project will develop and test a new participatory, dialogic method that leverages informal family engineering activities to support the development of executive function skills for preschool-age children from Latinx families. The combination of this proposal’s unique engagement of parents as research partners with the study of engineering and executive functions could lay the foundation for a promising program of future equity-focused research.

Three research questions will guide the study: 1) What knowledge, assets, and practices already exist within Latinx families related to these executive function skills? 2) What aspects of executive function skills can be supported through informal family engineering activities? and 3) What are promising design strategies for adapting informal family engineering activities to highlight family assets and support executive function skills for young children? To address these questions, the project team will engage Latinx parents in a dialogue series in which parents are central collaborators, sharing their in-depth perspectives and partnering with researchers to develop conceptual frameworks and new approaches. Data generated through these ongoing discussions will be analyzed using (a) qualitative, participatory approaches, including iterative co-development and refinement of emergent themes with parents, (b) detailed inductive coding of parent dialogue group discussions using grounded theory techniques, and (c) retrospective analysis at the end of the project. The parent dialogue series will be supported by a systematic literature review examining the intersections between engineering design, executive function, and the strengths and assets within Latinx families. The results of the exploratory research will include a (1) conceptual framework co-developed with parents that highlights promising opportunities and design strategies for using family engineering design activities to support executive function skills for preschool-age children from Latinx families and (2) research agenda outlining questions and priorities for future work that reflect the goals and interests of this community. Aligned with project’s equity approach, the team will work collaboratively with project partners and families for dissemination, focusing on amplifying community voices, sharing challenges and successes, and supporting improvements in the local community. Results will also be broadly shared with educators and researchers to advance knowledge and promote new equitable approaches to collaborating with parents from Latinx communities.

This Pilots and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Smirla Ramos-Montañez Scott Pattison Shauna Tominey
resource project Media and Technology
For both parents and educators, monitoring and adjusting their behaviors to ensure that children develop appropriate prosocial and learning behaviors is a complex balance between nurturance and limit setting. When these interactions are strained, negative or coercive cycles may emerge that delay appropriate development and exacerbate existing impairment. To disrupt the development of coercive cycles, adults must have the ability to accurately assess the quality of their interactions with children and integrate this information into personal change. Approaches to measuring these types of interactions will inform what we know about the mechanisms of child social, emotional, and learning development in STEM learning settings, and enable the creation of adaptive interventions for those moments when support is most needed. This project envisions a closed-loop intervention framework to promote a supportive and interactive environment around children. Smart wearables will sense interaction and responses between the children and their parents or educators, using embedded machine learning technology to recognize supportive behaviors. The perceived behaviors will be sent to a cloud server where adaptive interaction strategies will be identified from either online psychological consultation or artificial intelligence. These interaction strategies will then be provided to the parents and educators in the form of guidance cues to promote a supportive STEM learning environment around the children.

This planning project aims to understand the barriers and critical problems in the implementation of smart technology and psychological strategies to support adult-child interactions in STEM learning settings. The work will proceed by convening key stakeholders (parent organizations, formal educational institutions, and informal educational institutions) in a series of iterative discussions to produce a set of adult-child behavioral targets that are essential to children’s development of social, emotional, and learning skills. Further discussions will then identify mechanisms to enhance these behaviors, and reduce competing, less effective approaches. Qualitative thematic analysis of the discussions will be used to capture these behaviors and mechanisms. Then technologies will be developed to measure, provide feedback on, and improve these behaviors. These devices will be piloted with adult-child dyads. Audiovisual data collected by the devices will be human coded as well as processed by algorithms to vet the technological capacity of the devices to detect and respond to targeted behaviors. A series of debriefing interviews and surveys with adult-child dyads will be used to determine the feasibility, acceptability, and utility of the devices. The collected preliminary data will support the forming of critical technological and social science research questions that co-inform one another: questions about the social engagement between adults and children will drive the technical research, and what can be discovered via the technological research will open up new questions that can be posed about social engagement between children and adults. Adult-child interactions are key social factors that integrate to produce student social, emotional, and academic outcomes. Within our informal educational communities, our formal educational communities, and our familial communities it is essential to find the best mechanisms for measuring, providing feedback, and improving these interactions. This work thus seeks to advance a new approach to, and evidence-based understanding of, the development of STEM learning. This Smart and Connected Communities project is also supported by the Advancing Informal STEM Learning program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Ou Bai Kellina Lupas William Pelham
resource project Media and Technology
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Despite the rich scientific evidence of adaptations and their evolutionary basis, there are concerning public misconceptions about evolution, processes of natural selection, and adaptations in the biodiverse world. Such misconceptions begin early. Younger elementary school children are often resistant to the idea that one “kind” of animal could descend from a completely different kind of animal, and they see features as having always existed. Other misconceptions lead to an inaccurate belief that changes in individual organisms acquired in a lifetime are passed directly on to offspring or that entire populations transform as a whole. These cognitive biases and "intuitive” misunderstandings can persist into adulthood. This Innovations in Development project will counter that narrative through an informal science project focusing on the blue whale one of nature’s most spectacular stories of adaptation. It is a species that lives life at extremes: a long-distance migrator, a deep diver, an extravagant eater, the largest animal to ever exist. With its awe-inspiring size and rich mosaic of anatomical, physiological, and behavioral specializations, it serves as a bridge to an enriched understanding of universal concepts in elementary biology and can begin to dispel the deeply rooted misconceptions. The project deliverables include a giant screen film documenting the field work of research scientists studying the blue whales in the Indian Ocean and Gulf of Mexico; multi-platform educational modules and programs that will build on the blue whale content from the film for use in science center programs and rural libraries; and professional development webinars that will offer content utilization and presentation skills for ISE facilitators. Project partners include California Science Center, STAR Library Education Network, HHMI Tangled Bank Studios and SK Films.

The external evaluation studies will gather data from 20 participating rural libraries and 6 science museums. A formative evaluation of the film will be conducted in a giant screen theater setting with 75 families. After viewing a fine-cut version of the film they will complete age-appropriate post-viewing surveys on the film’s engagement, storytelling, content appeal and clarity, and learning value in communicating key science concepts. An external summative evaluation will include three studies. Study 1 will assess the implementation of the project at the 26 organizations, addressing the question: To what extent is the project implemented as envisioned in the libraries and science center settings? Baseline information will be collected, and later partners will complete post-grant surveys to report on their actual implementation of the project elements. In addition, the study will examine outcomes relating to professional development. Study 2 will be an evaluation of the film as experienced by 400 youth and parents in science centers and examining the question: To what extent does experiencing the film engage youth and parents and affect their interest, curiosity, and knowledge of blue whales, adaptations, and the scientific process? Study 3 will examine: To what extent and how does experiencing an educational module (virtual field trips, hands on activities, augmented reality) affect youth and parents’ interest, curiosity, and knowledge of adaptations and scientific process?
DATE: -
TEAM MEMBERS: Charles Kopczak Gretchen Bazela
resource project Media and Technology
Families play a vital role in supporting children’s informal science learning. Yet multiple studies have shown that Latinx families, particularly in neighborhoods with a high poverty rate, face many barriers to accessing informal science experiences and environments. Telenovelas, a type of television serial drama watched by Spanish-speaking audiences around the world, may provide an entryway to reaching these families. Prior research has shown that telenovelas can be an effective means of changing adults’ behavior, with potential cascading impacts on children. Education Development Center, Literacy Partners, and Univision will use a culturally responsive approach to broaden participation of Latinx families in informal science learning using La Fuerza de Creer, a popular Spanish-language telenovela that reaches 7 million U.S. viewers. The five-episode telenovela series will model positive informal science interactions between caregivers and their children and provide positive role models of Latinx scientists. The project team will then use the telenovela as the foundation for a five-session workshop series for caregivers to further explore how to engage in these informal science learning opportunities with their children. The La Fuerza-STEM project will build on families’ strengths and interests and tap their power—la fuerza—to engage children in exploring science. This research will examine the relationship between the telenovela/workshops and caregivers’ practices and attitudes towards science. La Fuerza-STEM seeks to expand informal science learning using a culturally grounded strategy to engage an under-served population that is historically under-represented in STEM.

The project will use an iterative research and design process that is guided by the input of both parent and scientific advisory boards. Front-end formative research with approximately 30 Latinx caregivers from under-resourced communities will explore their informal science practices. These experiences will then inform script development for the telenovela. A pre-post comparison group study with 200 caregivers will investigate how caregivers’ attitudes toward science might change as a result of viewing the telenovela. The project will then build a 5-session workshop series around the telenovela and these research findings. Finally, 300 caregivers will participate in a randomized controlled trial to examine the efficacy of the La Fuerza-STEM workshops on changing caregivers’ informal science attitudes and practices. Throughout, the project will address the overarching research question, How can a culturally relevant telenovela be used to improve Latinx caregivers’ science self-efficacy, career awareness, and informal science practices? Project findings and products will be publicly disseminated through publications, conference presentations, and local partner organizations, with an eye toward open access and data sharing. The project will generate knowledge about the effectiveness of embedding informal science content in a culturally-grounded medium—the telenovela—in improving caregivers’ confidence and competence to engage in informal science learning experiences with their children. With an anticipated audience of 7 million, the potential impact of the telenovela on caregivers’ informal science attitudes and practices is enormous. By implementing workshops with local organizations, the project aims to be self-sustaining, building the capacity of community partners to provide families with services targeting informal science knowledge and skills long after the grant has ended.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Joy Kennedy Jessica Young Alexia Raynal Anthony Tassi
resource evaluation Media and Technology
This is a survey we developed in 2018 for our exploratory research study of listeners and their parents/guardians of the children's science podcast, Brains On!. The survey includes questions about who listens, when and where children listen, children's listening behaviors, motivations for listening, activities after listening, household information, and demographic questions.
DATE:
resource research Exhibitions
Awareness of a STEM discipline is a complex construct to operationalize; a learner’s awareness of a discipline is sometimes viewed through the lens of personal identity, use of relevant discourse, or knowledge of career pathways. This research proposes defining engineering awareness through a learner’s associations with engineering practices - fundamental processes involved in engineering such as identifying criteria and constraints, testing designs, diagnosing issues and assessing goal completion. In this study, a learner’s engineering awareness was determined by examining 1) their ability to
DATE: