Skip to main content

Community Repository Search Results

resource evaluation Public Programs
The NSF-funded project titled An Informal Learning Model of Genetic and Genomic Education for Adult Bilingual Learners, was led by Joanne Sandberg, PhD. The project included three phases: Phase I: Investigation of knowledge and beliefs about transmission of traits, genetic and genomic concepts, gene-environment interactions, and environmental exposures in Latinx adults born in Mexico or Central America and who have limited literacy. Phase II: Development of two educational interventions in Spanish that address: Information about environmental exposures that can be detrimental to
DATE:
TEAM MEMBERS: Louisa Stark
resource research Public Programs
In November 2020, President-elect Joe Biden identified four priority areas for the incoming administration: COVID-19; climate change, economic recovery, and racial equity. These crucial areas of national interest will be the focus of media attention, policy debates, funding initiatives, and community discussions over the next four years. Will museums be part of these important conversations and initiatives? Are there opportunities for museums to affirm or to reposition their roles within the difficult public deliberations ahead? Addressing Societal Challenges through STEM (ASCs) is a research
DATE:
resource project Informal/Formal Connections
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.

This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.

This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Bernadette Sanchez Aerika Loyd Rex Babiera Nicole Kowrach
resource project Media and Technology
Families play a large role in igniting children's interest in science pathways, but they may not always have access to high-quality materials that demonstrate clear connections between science and their daily lives. This project will address this issue by developing high-interest materials that teach the science of food preparation to families with children ages 7-13. These materials include the following four components: (a) Food Labs, food-based investigations taking place in museums or in food service facilities; (b) take-home kits allowing families to conduct similar types of Food Labs at home; (c) a series of question starters called Promoting Interest and Engagement in Science (PIES) designed to facilitate meaningful family conversations around food preparation; and (d) a mobile app designed to deepen families' understandings of relevant science concepts and containing embedded measures of STEM learning. This project will advance knowledge regarding features of take-home materials that foster family science learning and ignite children's interest in science pathways.

This Innovations in Development Project will result in empirically-tested instructional materials that support families, with children ages 7-13, in conducting scientific investigations and holding scientific conversations related to food preparation. Kent State University, in partnership with The Cincinnati Museum Center and La Soupe, a food service provider for families who face food insecurity, will collaboratively develop and test the four interrelated sets of instructional materials mentioned above that are designed to deepen families' scientific content knowledge related to the chemistry of food preparation. To iteratively design and evaluate these materials, the team will conduct both laboratory and in-vivo experiments using a Solomon design with a pre- and post-demonstration survey. The survey will measure children's interest, knowledge, and engagement. For a month after interacting with instructional materials, families will document their science activity at home through the app. Additionally, through analyzing audio-recordings, the team will determine whether and how families ask questions using the PIES materials. Finally, post-demonstration interviews with participating families will focus on the usability and accessibility of the instructional materials. Quantitative and qualitative analyses of the pre-post surveys, interview transcripts, and audio-recordings will be used to improve the instructional materials, and the revised materials will be re-assessed using the same experimental methods and outcome measures. The final set of instructional materials will be developed and widely disseminated for easy use at other science museums, food service providers, and in families' homes. This project leverages partnerships to generate empirical knowledge on features of learning environments that support family science learning and engagement, resulting in empirically-based materials designed to broaden participation in science. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Whitney Owens
resource research Media and Technology
Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show
DATE:
TEAM MEMBERS: Aaron Price Katherine Gean Claire Christensen Elham Beheshti Bryn Pernot Gloria Segovia Halcyon Person Steven Beasley Patricia Ward
resource evaluation Public Programs
In 2015, the Swinomish Indian Tribal Community (SITC) received a two-year NSF-AISL Pathways Grant (#1516742) entitled “Developing an Informal Environmental Health Education Model in Tribal Communities,” designed to develop a process model and curriculum for community-based environmental health outreach, grounded in cultural values and practices. The project deliverables included a curriculum and guiding document, intended to inform and inspire other tribal communities wishing to create a culture-based environmental or public health curriculum. SITC contracted the Lifelong Learning Group
DATE:
resource project Public Programs
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of Making have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. WestEd, in collaboration with the Lucile Packard Children's Hospital, the University of Michigan C. S. Mott Hospital Children's Hospital, and the Children's Hospital of Orange County, is conducting a year-long exploratory research study that will focus on the out-of-school learning by adolescents and young adults in children's hospitals. This research study will focus on mobile and dedicated Makerspaces in hospitals to support patients' learning. The application of Makerspaces to hospital environments is a unique opportunity to research a critical need of chronically ill individuals, i.e. to explore how Making can enhance patients' agency, creative STEM learning, and physical well-being. The proposed study is building on the prior work of the principal investigator and will: (1) examine the nature and processes of learning in children's hospitals; (2) revise the current design of the mobile Makerspace and the associated implementation model in response to variations in programmatic contexts across multiple hospital settings and disparate patients' conditions; and (3) investigate and test the effectiveness of the Makerspace approach as it relates to both patients' learning and health outcomes. The study would contribute to longer-term efforts to develop a comprehensive, scalable, and sustainable strategy to determine the programmatic viability of the mobile Makerspace approach across a more varied array of hospital settings. This project has the potential to have a much broader impact by reaching out to other isolated students beyond the hospital environment, including those in residential treatment facilities for behavioral and emotional problems, as well as those attending programs designed to help youth who have been in trouble with the law get back on track. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project's goals are to contribute to the understanding of how to: (1) describe and measure the education and health impact of mobile Makerspaces on chronically ill patients, and (2) design and sustain implementation models in various hospital settings. Since a children's hospital is a challenging context to support a patient's learning, it is not typically conducive to learning. Patients are constantly interrupted by the demands of the illness, by the strict protocols that need to be adhered to, and by the medical staff who manage their exhaustive treatment regimens. The mobile Makerspace is intended to adjust the environment in deliberate ways, allowing researchers to study and observe what kinds of learning intervention models enable youth and young adults to recapture a sense of their own agency and enable them to see themselves as creators, and makers of things that improve their own and others' lives. The project will have two strands: one on learning and one on adaptation of the model. In the learning strand, the study will investigate how engaging with the Makerspace can enhance patients' learning by provoking their sense of curiosity, encouraging them to set up and pursue personal goals via invention, and inspiring them to feel more agentive in taking charge of their learning process i.e., development of affinity for and fluency in the ways of knowing, doing and being (the epistemologies and ontologies) of engineers or scientists. In the adaptation strand, they will identify challenges and opportunities for implementing Makerspaces and develop an implementation plan that provides a process for introducing Makerspaces into hospital settings.
DATE: -
TEAM MEMBERS: Gokul Krishnan Steven Schneider
resource project Public Programs
Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The Smart and Connected Communities (SCC) program supports strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. This project is a Research Coordination Network (RCN) that focuses on achieving SCC for medium/small size, remote, and rural communities through a polycentric (multiple centers) integrated policy, design, and technology approach. The communities served by the RCN have higher barriers to information, resources, and services than larger urban communities. To reduce this gap, the PIs propose to develop need-based R&D pipelines to select solutions with the highest potential impacts to the communities. Instead of trying to connect under-connected communities to nearby large cities, this proposal aims to develop economic opportunities within the communities themselves. This topic aligns well with the vision of the SCC program, and the proposed RCN consists of a diverse group of researchers, communities, industry, government, and non-profit partners.

This award will support the development of an RCN within the Commonwealth of Virginia which will coordinate multiple partners in developing innovations utilizing smart and connected technologies. The goal of the research coordination network is to enable researchers and citizens to collaborate on research supporting enhanced quality of life for medium, small, and rural communities which frequently lack the communication and other infrastructure available in cities. The research coordination network will be led by the University of Virginia. There are 14 partner organizations including six research center partners in transportation, environment, architecture and urban planning, and engineering and technology; two State and Industry partners (Virginia Municipal League and Virginia Center for Innovative Technology); four community partners representing health services (UVA Center for Telemedicine), small and remote communities (Weldon Cooper Center), neighborhood communities (Charlottesville Neighborhood Development), and urban communities (Thriving Cities); and two national partners which support high speed networking (US-Ignite) and city-university hubs (MetroLab). Examples of research coordination include telemedicine services, transportation services, and user-centric and community-centric utilization and deployment of sensor technologies.
DATE: -
TEAM MEMBERS: Ila Berman T. Donna Chen Karen Rheuban Qian Cai
resource project Public Programs
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.

The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.

This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Perla Myers Vitaliy Popov Odesma Dalrymple Yaoran Li Joi Spencer
resource project Media and Technology
As part of its overall effort to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program, seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. In alignment with these aims, the STEM + Digital Literacies (STEM+L) project will investigate science fiction as an effective mechanism to attract and immerse adolescents (ages 10-13) from diverse cultural backgrounds in environmental and human health content and socio-scientific issues. This work is particularly novel, as the current knowledge base is limited, and largely addresses the high school level. Therefore, the results of the proposed effort could yield important findings regarding the feasibility of this activity as an effective platform for science learning and engagement for younger students. As such, STEM+L would not only advance knowledge in the field but would also contribute to a growing AISL portfolio on digital literacy and learning.

STEM+L is an early stage Innovations in Development project that will engage thirty middle school students in out of school time experiences. Over a twenty-four-week period, students will work collaboratively in groups in-person and online with their peers and field experts to design, develop, and produce STEM content rich, multimedia science fictions. The in-person learning experiences will take place on the University of Miami campus during the summer and academic year. Culminating activities include student presentations online and at a local Science Fiction Festival. The research component will employ an iterative, design-based approach. Four research questions will be explored: (a) How do students learn science concepts and multimodal digital literacies through participating in the STEM+L Academy? (b) How do students change their views in STEM related subject matter and in pursuing STEM related careers? (c) How do students participate in the STEM+L Academy? (d) How do we best support students' participation and learning of STEM+L in face-to-face and online environments? Data collection methods include video records, student-generated artifacts, online surveys, embedded assessments, interviews, and multimodal reflections. Comparative case analysis and a mixed methods approach will be employed. A rigorous evaluation will be conducted by a critical external review board. Inclusive and innovative dissemination strategies will ensure that the results of the research and program reach a broad range of audiences including both informal and formal STEM and literacy educators and researchers, learning scientists, local communities, and policy makers through national and international conference presentations, journal publications, Web2.0 resources, and community outreach activities.
DATE: -
TEAM MEMBERS: Ji Shen Blaine Smith
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This Change Makers project will establish Food Justice Ambassador corps across three cities in Massachusetts where youth will install, manage and learn the science and technology underlying hydroponics. The project takes a near-peer mentoring approach that empowers high school youth to take the lead in improving ethnic minority and low-income residents' access to healthy produce and to help educate middle school youth regarding the value of fresh produce in one's diet by learning the science of hydroponics. Youth will create story maps to visualize food accessibility in their communities. High school youth will work with their communities to establish hydroponic farms in middle school after-school settings. The food that is grown will be provided to the community through farmers' markets. Youth will share their work with a larger community of urban farmers at the Massachusetts Urban Farming Conference. This project seeks to understand the contribution on youth development by the model's three components: (1) STEM learning embedded in a social justice framework, (2) near-peer mentoring, and (3) youth purpose and career development. This will enable researchers to better understand how the project enables youth to learn STEM skills; apply them to a real life problem; learn the relevance of STEM skills for addressing personal, career aspiration, and social justice issues; develop a sense of purpose and aspirations related to STEM fields; and mentor other youth through the same process. The project will use a mixed-method, multi-site longitudinal study utilizing quantitative surveys, structural equation modeling, and qualitative interviews to study the intersections of the components of the project. As such, the study will address three key questions: 1) How do youth and mentors perceive and experience their roles as participants in the pedagogy? 2) What is the impact of the intervention on youth' sense of purpose, identity, career adaptability, work volition, critical consciousness, school engagement, STEM interests, and STEM intentionality? 3) What is the contribution of relational/mentoring and psychosocial/career adaptability aspects of the youths' contexts on their capacity to benefit from this program and to develop and sustain purpose and engagement in school and STEM? Most urban youth (and adults) have little knowledge of where their food comes from and have limited opportunities to learn how to grow produce as well as develop related skills that can lead to a career in a STEM field. This is particularly disconcerting as 55% of African Americans live inside central cities (90% in metropolitan areas) and over half of all Latino/as live in central cities (United States Census Bureau, 2011). This project entails the recruitment of low-income youth from populations underrepresented in science into a program where social justice concerns (food justice, food security) are illuminated, analyzed, and acted upon through the development of STEM knowledge and skills. Specifically, this project recognizes the potential for urban youth to become deeply knowledgeable citizens who can mobilize their STEM knowledge and skills to resolve social injustices such as food deserts. If successful, this project will provide a model that should be transferable to similar contexts to help broaden participation in STEM.
DATE: -
TEAM MEMBERS: George Barnett Belle Liang David Blustein
resource evaluation Public Programs
From 2011 to 2013 Pacific Science Center created content for and regularly updated The Studio, a portal to current medical research within the Science Center’s new human health exhibit, Professor Wellbody’s Academy of Health and Wellness. The Studio is a 500 ft2 hybrid exhibit/program space that combines artifacts, hands-on exhibits, media, and a programming area where local researchers communicate their work to visitors. The Studio was designed to be extremely flexible and it's modularity enables the project team to install a new current research exhibit every six months. The aim of the IMLS
DATE: