Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Bob Hirshon Monae Verbeke Suzanne Thurston
resource evaluation Informal/Formal Connections
This document is the final evaluation report for the project, which focuses both on formative evaluation of the collaborative+interdisciplinary presentation creation process and summative evaluation of audience learning outcomes. 
DATE:
TEAM MEMBERS: Justin Reeves Meyer Donnelley (Dolly) Hayde Laura Weiss
resource research Exhibitions
The open-access proceedings from this conference are available in both English and Spanish.
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Uduak Grace Thomas Bennett Attaway Lisa Chalik Jason Corwin Kevin Crowley Michelle Ciurria Colleen Cotter Martina Efeyini Ronnie Janoff-Bulman Jacklyn Grace Lacey Reyhaneh Maktoufi Bertram Malle Jo-Elle Mogerman Laura Niemi Laura Santhanam
resource research Media and Technology
This NOVA multiplatform media initiative consisted of a 2-hour nationally broadcast PBS documentary, Polar Extremes; a 10-part original digital series, Antarctic Extremes; an interactive game, Polar Lab; accompanying polar-themed digital shorts, radio stories, text reporting, and social media content; a collection of educational resources on PBS LearningMedia; and community screening events and virtual field trips for science classrooms. Across multiple media platforms the project’s video content had nearly 13 million views. The research explored the potential for informal STEM learning
DATE:
TEAM MEMBERS: Lisa Leombruni Heather Hodges
resource research Media and Technology
The Year in ISE is a slidedoc designed to track and characterize field growth, change and impact, important publications, and current topics in ISE in 2018. Use it to inform new strategies, find potential collaborators for your projects, and support proposal development. Scope This slidedoc highlights a selection of developments and resources in 2018 that were notable and potentially useful for the informal STEM education field. It is not intended to be comprehensive or exhaustive, nor to provide endorsement. To manage the scope and length, we have focused on meta analyses, consensus reports
DATE:
TEAM MEMBERS: James Bell
resource research Media and Technology
U!Scientist is an in-gallery touch table adaptation of the popular online citizen science project Galaxy Zoo. Taking advantage of the social opportunities in a museum setting, the project aims not only to enhance visitors’ science self-efficacy but also to encourage visitors to discuss their choices with friends and family. This poster was presented at the 2019 NSF AISL Principal Investigators Meeting.
DATE:
TEAM MEMBERS: Becky Rother
resource research Media and Technology
This CAISE report is designed to track and characterize sector growth, change and impact, important publications, hot topics/trends, new players, funding, and other related areas in Informal STEM Education (ISE) in 2017. The goal is to provide information and links for use by ISE professionals, science communicators, and interested stakeholders who want to discover new strategies and potential collaborators for project and proposal development. Designed as a slide presentation and divided into sectors, it can be used modularly or as a complete report. Each sector reports on research, events
DATE:
resource project Games, Simulations, and Interactives
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. The proposed project broadens the utility of Public Participation in Scientific Research (PPSR) approaches, which include citizen science, to support new angles in informal learning. It also extends previous work on interactive data visualizations in museums to encompass an element of active contribution to scientific data. To achieve these goals, this project will develop and research U!Scientist (pronounced `You, Scientist!')--a novel approach to using citizen science and learning research-based technology to engage museum visitors in learning about the process of science, shaping attitudes towards science, and science identity development. Through the U!Scientist multi-touch tabletop exhibit, visitors will: (1) interact with scientific data, (2) provide interpretations of data for direct use by scientists, (3) make statements based on evidence, and (4) visualize how their data classifications contribute to globe-spanning research projects. Visitors will also get to experience the process of science, gaining efficacy and confidence through these carefully designed interactions. This project brings together Zooniverse, experts in interactive design and learning based on large data visualizations in museums, and leaders in visitor experience and learning in science museums. Over fifty thousand museum visitors are expected to interact annually with U!Scientist through this effort. This impact will be multiplied by packaging the open-source platform so that others can easily instantiate U!Scientist at their institution.

The U!Scientist exhibit development process will follow rapid iterations of design, implementation, and revision driven by evaluation of experiences with museum visitors. It will involve close collaboration between specialists in computer science, human-computer interaction and educational design, informal science learning experts, and museum practitioners. The summative evaluation will be based on shadowing observations, U!Scientist and Zooniverse.org logfiles (i.e., automated collection of user behavior metrics), and surveys. Three key questions will be addressed through this effort: Q1) Will visitors participate in PPSR activities (via the U!Scientist touch table exhibit) on the museum floor, despite all the distractions and other learning opportunities competing for their attention? If so, who engages, for how long, and in what group configurations? Q2) If visitors do participate, will they re-engage with the content after the museum visit (i.e., continue on to Zooniverse.org)? Q3) Does engaging in PPSR via the touch table exhibit--with or without continued engagement in Zooniverse.org after the museum visit--lead to learning gains, improved understanding of the nature of science, improved attitudes towards science, and/or science identity development?
DATE: -
TEAM MEMBERS: Laura Trouille Sarah Cole Becky Rother
resource project Media and Technology
Glaciers around the world are undergoing dramatic changes. Many people, however, have a limited understanding of the scope of these changes because they are geographically distant and difficult to visualize. Although both digital learning tools and online scientific data repositories have greatly expanded over the last decade, there is currently no interface that brings the two together in a way that allows the public to explore these rapidly changing glacial environments. Therefore, to both improve public understanding and provide greater access to already existing resources, the project team will develop the Virtual Ice Explorer to encourage informal learning about glacial environments. This web application will feature an immersive virtual environment and display a suite of environmental data for an array of Earth's glacial systems. An interactive globe will allow users to select from a collection of sites ranging from polar regions to tropical latitudes. Each featured site will offer users an opportunity to interact with (1) a 3D rendering of the landscape; (2) a local map of the site; (3) historical and contemporary photographs of the site; (4) background information text describing the location, past research, and climate impacts; and (5) available environmental data. One of the most original features of the application will be its realistic, immersive 3D rendering of glacial landscapes by combining very high-resolution digital elevation models and satellite imagery with the application's built-in capabilities for immersive virtual environments. Although immersive environments often require expensive equipment, we are maximizing accessibility by developing the Virtual Ice Explorer to run in a web browser and function across various devices. Thus, the application will be available to anyone with internet access, and they can explore at their own pace.

As part of the successful development of Virtual Ice Explorer, the project team will create a platform for digital elevation models to be visualized and explored in 3D by users within the web application; curate digital elevation models, maps, images, text, and environmental data for inclusion in the web application for up to 11 geographically diverse glaciers/glacial landscapes; iteratively user-test the web application with project partners; and design the architecture of the system to readily scale to a larger collection of glaciers/glacial landscapes. To extend dissemination of the final products, the team has partnered with the U.S. Geologic Survey to showcase four benchmark glaciers in their long-term Glaciers and Climate project. In addition to improving understanding of glacier systems in informal learning environments, the project team will explore applications for spatial learning, employment of 3D environments for educational interventions, and use of Virtual Ice Explorer in formal learning environments. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Jason Cervenec Jesse Fox Julien Nicolas
resource project Media and Technology
Becoming computationally literate is increasingly crucial to everyday life and to expanding workforce capacity. Research suggests that computational literacy--knowing what, when, how, and why to use the ideas of computer science, in combination with the capacity to view problems and potential solutions through the lens of computational structures and procedures--can be supported through digital game play. This project aims to develop a social and creative exhibit game that foregrounds aspects of computer science, specifically artificial intelligence (AI) and computer programming, in ways that enable youth to explore, construct, and share computational complex systems content with one another and other museum visitors. To play the game, pairs of youth visitors will use code cards to program the behavior of AI animals in a virtual forest. As they do so, youth will engage with computational literacy practices, such as basic computer programming, describing their computational ideas, and doing computational problem solving with their friends. Their activity will be projected on a large screen as a strategy for enabling youth to test, rehearse, and communicate their computational ideas and to also interest other visitors into computational problem solving.

Using multi-perspective and iterative design-based research, university learning scientists, museum practitioners, and game developers will pursue research questions around how science museums can better engage youth who are traditionally underrepresented in computer science in complex computational practices. Data sources will include interactive-log data, observations of visitor interactions with the game, visitor interviews, and visitor surveys. A multimodal and mixed methods approach that searches for convergences between qualitative analysis, quantitative analysis, and learning analytics will be used to generate research findings. Changes in computational literacy will be assessed by evaluating what problems visitors choose to solve with programming, how they frame those problems, and their selections from among possible solutions, what they program, how they program, and how they describe programming ideas. The results of this project will include: 1) a social, interactive gameplay experience that supports the development of computational literacy; 2) design principles for game-based exhibits that facilitate development of computational literacy; and 3) new knowledge of variations in design and gameplay across diverse gameplay users, including those from underrepresented groups in computer science. It is anticipated that 1,000 museum youth visitors will directly participate in the study.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Matthew Berland Leilah Lyons Matthew Cannady
resource project Media and Technology
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.

In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE: -
TEAM MEMBERS: David Shaffer Kristen Scopinich Holly Gibbs Jeffrey Linderoth
resource project Media and Technology
The project will advance efforts by the American Association for the Advancement of Science and the Institute for Learning Innovation to bring together young adults from communities historically underrepresented in science, technology, engineering, and mathematics (STEM) to collaboratively conduct scientifically driven challenges embedded in a mobile learning tool based upon the AAAS Active Explorer platform. The project will be conducted at the Washington National Mall, San Francisco National Golden Gate Park, and the Boston Harbor Islands National Recreation Area, and will study how a mobile technology used in these settings can facilitate learner engagement in science content; how it can affect young adults' engagement in science-learning processes; and whether interest in learning science and technology has been furthered. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including pathways for broadening access to STEM learning experiences and advancing research STEM learning. Research questions will investigate science learning inequalities by addressing how place-based augmented reality games can connect young adults to scientific practices, including observing science phenomena, analyzing data, and communicating findings; how young adults develop science skills related to their science self-efficacy through participation in augmented reality science exploration; and how mobile technologies and gaming can serve as mediators that enable young adults to improve their science identity. In addition to engaging young adults in science activities at the National Parks and increasing their science skills, the project will provide valuable information to National Park staff and scientists to assist them in designing effective tools, resources and experiences to better engage young adults. Research teams will collect data in the form of digital ethnography, focus groups, activity reports, artifacts, and surveys. The project will document learning and engagement through mobile technology in three urban national parks that will involve 60 young adults at each location, and will create innovative measurement tools to monitor how informal settings can leverage the intersections of the arts and sciences to support student engagement and learning.
DATE: -