Skip to main content

Community Repository Search Results

resource research Public Programs
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
resource evaluation Informal/Formal Connections
This summary brief captures highlights from the second year of the NSF-funded WaterMarks project. The technical evaluation report for this same project period can be found on the main project page. The purpose of this document is to communicate key updates (as observed by the evaluation team) in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This is the evaluation report for the second year of the NSF-funded WaterMarks project. It reflects a current summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Exhibitions
We examined an approach to reaching audiences who may not ordinarily engage with science. Termed Guerilla Science, this approach blends elements of access, by removing barriers to participation by embedding science into unexpected places, with those of inclusion, by designing activities that speak to the learning identities of participants.
DATE:
resource evaluation Informal/Formal Connections
This summary brief captures highlights from the evaluation report for the first year of the NSF-funded WaterMarks project (also available on this page). The purpose of this document is to communicate key updates from evaluation in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This is the evaluation report for the first year of the NSF-funded WaterMarks project. It reflects an initial summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward. This report contains descriptions of embedded measures (i.e. anonymized drawings and reflections captured on a thematic postcard) included in community walks and analyses of secondary data (i.e., interviews conducted by other members of hte project team), as well as reflections emerging from the
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource evaluation Public Programs
A mixed-methods series of surveys were used to explore public literacy related to environmental science and sustainability in Indianapolis. Surveys also explored predictive variables including environmental identity, nature affinity, use of nature places as learning opportunities, and motivations for visiting nature spaces. An online, citywide consumer survey was distributed alongside a parallel identical survey of employees at a major science-based corporation to assess variation in knowledge, attitudes, and learning behaviors. This science-based corporation provides substantial support to
DATE:
TEAM MEMBERS: John Fraser Su-Jen Roberts Nezam Ardalan
resource project Media and Technology
Worldwide, four million people participate in geocaching--a game of discovering hidden treasures with GPS-enabled devices (including smart phones). Geocachers span all ages and tend to be interested in technology and the outdoors. To share information about the Montana Climate Assessment (MCA), an NSF-funded scientific report, Montana State University created a custom trackable geocaching coin featuring the MCA Website and logo. We then recruited volunteers to hide one coin in each of Montana’s 56 counties. Volunteer geocachers enthusiastically adopted all 56 counties, wrote blogs and social media posts about the coins, and engaged local Scout troops and schools. Other geocachers then found and circulated the coins while learning about Montana’s climate. One coin has traveled nearly 4,000 miles; several have visited other states and Canada. 95% of the volunteers said the project made them feel more connected to university research, and they told an average of seven other people about the project. Nearly all of the participants were unfamiliar with the Montana Climate Assessment prior to participating. The geocaching educational outreach project included several partnerships, including with Geocaching Headquarters in Seattle (a.k.a. “Groundspeak”); Cache Advance, Inc., an environmentally friendly outdoor gear company; and Gallatin Valley Geocachers. An advisory board of geocachers helped launch the project.
DATE:
TEAM MEMBERS: Suzi Taylor Ray Callaway M.J. Nehasil Cathy Whitlock
resource research Public Programs
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
DATE:
TEAM MEMBERS: Amie Patchen Andrea Aeschlimann Anne Vera-Cruz Anushree Kamath Deborah Jose Jackie DeLisi Michael Barnett Paul Madden Rajeev Rupani
resource evaluation Media and Technology
The Sharing the Universe (STU) project was funded by NSF in 2007 to develop and make available resources and supports to deepen and broaden the education and public outreach (EPO) of amateur astronomy clubs who are members of the Night Sky Network. To achieve this goal, the project funded a development group: the Astronomical Society of the Pacific, and a research group: Institute for Learning Innovation. These two groups were to work as partners, both to study the barriers and challenges that existed for amateur astronomy clubs to educational outreach, and to apply what was learned from those
DATE:
TEAM MEMBERS: Pam Castori Mark St. John
resource project Media and Technology
This project engages members of racially and economically diverse communities in identifying and carrying out environmental projects that are meaningful to their lives, and adapts technology known as NatureNet to assist them. NatureNet, which encompasses a cell phone app, a multi-user, touch-based tabletop display and a web-based community, was developed with prior NSF support. Core participants involved in programs of the Anacostia Watershed Society in Washington, D.C., and Maryland, and the Reedy Creek Nature Preserve in Charlotte, NC, will work with naturalists, educators, and technology specialists to ask scientific questions and form hypotheses related to urban waterway restoration and preservation of native species. They will then collect and analyze data using NatureNet, requesting changes to the technology to customize it as needed for their projects. Casual visitors to the nature centers will be able to interact with the environmental projects via the tabletop, and those who live farther away will be able to participate more peripherally via the online community. The research project, led by researchers from the University of Maryland, College Park, with collaborators from the University of North Carolina, Charlotte, and the University of Colorado, Boulder, will provide answers to two questions: 1) How do community-driven informal environmental learning projects impact participants, including their motivation to actively participate in science issues via technology and their disposition toward nature preserves and scientific inquiry? and 2) What are the key factors (e.g., demographic composition of participants, geographical location) that influence the development of community-driven environmental projects? Researchers will gather extensive qualitative and quantitative data to understand how community projects are selected and carried out, how participants approach technology use and adaptation, and how informal learning and engagement on STEM-related issues can be fostered over a period of several months and through iterative project cycles. Data will be collected through motivation questionnaires; focus groups; interviews; tabletop, mobile, and website interaction logs; field notes from participatory design and reflection sessions; and project journals kept by nature preserve staff. Through extensive research, iterative design, and evaluation efforts, researchers will develop an innovative model for community-driven environmental projects that will deepen informal science education by demonstrating how members of diverse communities connect environmental knowledge and scientific inquiry skills to the practices, values, and goals of their communities, and how technology can be used to facilitate such connections.
DATE: -
TEAM MEMBERS: Tom Yeh Mary Lou Maher Jennifer Preece Tamara Clegg Carol Boston