Skip to main content

Community Repository Search Results

resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences. This ITEST project aims to research the STEM career interests of late elementary and middle-school students and, based on the results of that research, build an informal education program to involve families and community partners to enhance their science knowledge, attitudes, experiences, and resources. There is an emphasis on underrepresented and low income students and their families.

The project will research and test a new model to promote the development of positive attitudes toward STEM and to increase interest in STEM careers. Phase 1 of the project will include exploratory research examining science capital and habitus for a representative sample of youth at three age ranges: 8-9, 9-10 and 11-12 years. The project will measure the access that youth have to adults who engage in STEM careers and STEM leisure activities. In phase II the project will test a model with a control group and a treatment group to enhance science capital and habitus for youth.
DATE: -
resource evaluation Media and Technology
In March of 2016, the Exploratorium transmitted a live webcast of a total solar eclipse from Woleai, a remote island in the southwestern Pacific. The webcast reached over 1 million viewers. Evaluation reveals effective use of digital media to engage learners in solar science and related STEM content. Edu, Inc. conducted an external evaluation study that shows clear and consistent evidence of broad distribution of STEM content through multiple online channels, social media, pre-produced videos, and an app for mobile devices. IBM Watson did a deep analysis of tweets on eclipse topics that
DATE:
TEAM MEMBERS: Douglas Spencer Sasha Minsky Jediah Graham
resource research Media and Technology
Given the importance of learning to economic and life success, this review seeks to broaden the conception of learning beyond traditional formal education. Learning occurs every day in many ways and in a range of settings. This broad scope of learning--termed "informal learning"--is increasingly important in the rapidly changing knowledge economy. As such, in this review paper, we examine the different types of informal learning, their opportunities and challenges, and their issues of access and equity. Spanning multiple disciplines, e draw particular attention to the workplace and adult
DATE:
TEAM MEMBERS: Michelle Van Noy Heather James Crystal Bedley
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE: -
TEAM MEMBERS: Corrin Barros Koh Ming Wei Danko Tabrosi Emerson Odango
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The SCIENCES project aims to create a STEM ecosystem in Fuller Park, a chronically, severely under-resourced urban community in Chicago.
DATE:
resource project Media and Technology
SciGirls and Citizen Science: Real Data, Real Kids, Real Discoveries SciGirls is showcasing Citizen Science! From their own backyards to a NASA research center, the bright, relatable, real girls featured on the groundbreaking PBS series are seriously into science, technology, engineering and math, or STEM. And Season Three of SciGirls finds these STEM adventurers tracking toads, counting clouds and much more, all in the name of citizen science. The brand-new season of the Emmy-winning show, featuring six stand-out episodes, debuted April 2015 on PBS KIDS (check local listings) and online at http://pbskids.org/scigirls. Citizen science is the newest STEM frontier that engages the general public –and kids – in real science. Scientists worldwide invite ordinary people—like the SciGirls—to observe and record data about everything from birds to beaches, monarch butterflies to maple trees. The data is then shared with scientists, who use it to generate new scientific knowledge. In six exciting new episodes, middle school girls and their female STEM professional mentors hit the great outdoors, cataloging frog calls, tracking the changing seasons, verifying satellite imagery of clouds, monitoring fragile butterfly populations, improving urban bird habitats, and advocating for healthy oceans. In addition, animated characters Izzie and Jake are back and finding themselves in sticky situations that can only be solved by STEM—and the SciGirls. When the SciGirls share their data with professional scientists, they save the day for Izzie and Jake and help save the environment! The new mobile-friendly website at http://pbskids.org/scigirls lets kids play new games, watch episodes and videos, and connect with fellow STEM explorers anywhere, anytime. “Collaboration is the key to successful citizen science,” said SciGirls executive producer Richard Hudson. “Since SciGirls’ beginning, working together—making discoveries, mistakes and friends—is one of the important research-based methods we use to engage girls around STEM. This new season underscores the importance of collaboration within the scientific research community and workforce. SciGirls is fortunate to have powerful partners advising us about citizen science, including the Cornell Lab of Ornithology, NASA and SciStarter.” The SciGirls creative team is headed by Twin Cities Public Television’s Director of Science Content Richard Hudson, Executive Producer of the long-running PBS children’s science series Newton's Apple and creator of DragonflyTV and the SciGirls initiative. Animation is created by Soup2Nuts, producers of PBS’ WordGirl. Strategic partners for the new series are the Cornell Lab of Ornithology, Rick Bonney co-PI, and the National Girls Collaborative Project, co-PI Karen Peterson. SciGirls is made possible by a major grant from the National Science Foundation. Additional funding is provided by INFOR, Northrop Grumman Foundation, and PPG Industries Foundation.
DATE: -
resource project Public Programs
The Chicago Zoological Society (CZS) in collaboration with Eden Place Nature Center, the Fuller Park Community Corporation, and the University of Illinois at Chicago (UIC) will implement the SCIENCES Program, Supporting a Community's Informal Education Needs: Confidence and Empowerment in STEM. The primary goals of this Full Scale Development project are to broaden access to and participation in environmental science, strengthen partnerships between CZS, Eden Place, and UIC, and gain insights into the 'ecosystemic' learning model which promotes scientific literacy and agency in the community. The project targets a low-resource community with a minority audience while the secondary audience is informal science learning organizations and researchers who will advance research in informal learning. The theoretical framework for the project design draws on conservation psychology, informal science learning, civic ecology education, and urban science education to create an ecosystematic, geographically centered approach. The deliverables include research, curriculum, and engaging hands-on programs for youth, families, adults, and teachers, reaching both in-school and out-of-school audiences, in addition to the SCIENCES Implementation Network. Three potential curriculum themes to be explored are water conservation and protection, pollinators for healthy ecosystems, and community resilience to climate change. The SCIENCES project offers a comprehensive suite of engaging programs for community audiences. For example, the year-long Zoo Adventure Passport (ZAP) program for families includes hands-on experiments and field trips, while project-based learning experiences enable teens to create wetlands, design interpretive signage, and develop associated public programming. School-based programs include professional development for teachers on the Great Lakes ecosystem and invasive species. Existing programs that have been previously evaluated and demonstrated to show learning impacts will be adapted and modified to meet the goals of the ecosystemic learning model by providing multiple learning opportunities. New learning resources will also be created to support the content themes and provide continuity. The result will be a comprehensive approach that ensures deep community engagement by individuals, families, and organizations, with cohesiveness provided by the overarching content themes which broaden access to STEM learning resources and leverages partnerships. The project includes both a research and evaluation plan. The primary research question to be addressed is: How does a large informal science learning institution work with a community-based organization to support environmental scientific literacy and agency at all levels of the community? A sociocultural framework will be used for this mixed-methods case study research. Study participants include community leaders, youth, parents, teachers, and staff from Eden Place. The case study sample will include 20 focal individuals drawn from the participant groups and approximately 300 survey participants. Case study data will be triangulated with evaluation data and analyzed using a grounded theory approach. By examining changes from the baseline following the implementation of the community programs, the findings may provide insight on agency and science literacy among community members. The comprehensive, mixed-methods evaluation plan employs a quasi-experimental design and incorporates front-end, formative, and summative evaluation components. The evaluation questions address the quality of the processes and products, access to environmental science learning opportunities, environmental science literacy, sustainability, and barriers to implementation. An extensive dissemination plan is proposed with a dual emphasis on meeting stakeholders' needs at multiple levels. The evaluation and research teams will emphasize publication in peer reviewed journals and presentations at conferences for informal science education professionals. Findings will be shared with the Fuller Park community stakeholders using creative methods such as one-page research briefs written in layperson's language, videos, and recorded interviews with participants. The local project Advisory Board will also be actively involved in the dissemination of findings to community constituents. The SCIENCES National Amplification Network will be created and work collaboratively with the American Association of Zoos and Aquariums and the Metropolitan Green Spaces Alliance to disseminate the model. Collectively, the activities and deliverables outlined in this proposal will advance the discovery of sustainable models of community-based learning while the research will advance the understanding of informal learning support for science literacy and agency.
DATE: -
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Public Programs
Boston's Museum of Science (MOS), with Harvard as its university research partner, is extending, disseminating, and further evaluating their NSF-funded (DRL-0714706) Living Laboratory model of informal cognitive science education. In this model, early-childhood researchers have both conducted research in the MOS Discovery Center for young children and interacted with visitors during the museum's operating hours about what their research is finding about child development and cognition. Several methods of interacting with adult visitors were designed and evaluated, including the use of "research toys" as exhibits and interpretation materials. Summative evaluation of the original work indicated positive outcomes on all targeted audiences - adults with young children, museum educators, and researchers. The project is now broadening the implementation of the model by establishing three additional museum Hub Sites, each with university partners - Maryland Science Center (with Johns Hopkins), Madison Children's Museum (with University of Wisconsin, Madison), and Oregon Museum of Science and Industry (with Lewis & Clark College). The audiences continue to include researchers (including graduate and undergraduate students); museum educators; and adults with children visiting the museums. Deliverables consist of: (1) establishment of the Living Lab model at the Hub sites and continued improvement of the MOS site, (2) a virtual Hub portal for the four sites and others around the country, (3) tool-kit resources for both museums and scientists, and (4) professional symposia at all sites. Intended outcomes are: (1) improve museum educators' and museum visiting adults' understanding of cognitive/developmental psychology and research and its application to raising their children, (2) improve researchers' ability to communicate with the public and to conduct their research at the museums, and (3) increase interest in, knowledge about, and application of this model throughout the museum community and grow a network of such collaborations.
DATE: -