Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource research Media and Technology
The KQED science news team began a study with Texas Tech University to find out whether stories aimed at generating “awe” would drive deeper engagement with news features. From a preliminary study the team learned people can feel experiences like connectedness and vastness, not only through images but through a written story. The team intended to write their own science stories through an "awe" framework, but the pandemic redirected the team's work, and halted testing of participants’ response to the articles, which would have required the use of Texas Tech's Psychophysiology Lab. Here are
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Jon Brooks
resource evaluation Media and Technology
KQED, the Northern California PBS and NPR member station, and the College of Media & Communication at Texas Tech University have recently completed a $3 million grant from the National Science Foundation (NSF) for the project Cracking the Code (CTC): Influencing Millennial Science Engagement. The three-year grant provided funding for an unprecedented science media research initiative between science media professionals and science communication academics with the goal of identifying how best to engage younger, more diverse audiences with science media. This report is the final process
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Scott Burg
resource research Media and Technology
KQED, the Northern California PBS and NPR member station, and the College of Media & Communication at Texas Tech University have recently completed a $3 million grant from the National Science Foundation (NSF) for the project Cracking the Code (CTC): Influencing Millennial Science Engagement. The three-year grant provided funding for an unprecedented science media research initiative between science media professionals and science communication academics with the goal of identifying how best to engage younger, more diverse audiences with science media. This is the final outcomes report.
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Scott Burg Kari Fox
resource research Media and Technology
KQED, a San Francisco based public media organization, is interested in broadening participation and attracting and engaging a younger and more diverse audience, especially millennials, for their science media. The KQED science team is one of the largest reporting teams in the West with a focus on science news and it’s YouTube series, Deep Look. This is a summary of Cracking the Code: Influencing Millennial Science Engagement, a three year media research project supported by NSF. The project brought together KQED science media professionals, academic science media researchers from Texas
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Scott Burg
resource research Media and Technology
This is the third of three guides for media practitioners, evaluators and researchers about some of what was learned through the project Cracking the Code: Influencing Millennial Science Engagement. This guide focuses on steps for conducting media research and research protocals.
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Scott Burg
resource research Media and Technology
This is the second of three guides for media practitioners, evaluators and researchers about some of what was learned through the project Cracking the Code: Influencing Millennial Science Engagement. This guide focuses on ways to identify your missing audience.
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Scott Burg
resource research Media and Technology
This is the first of three guides for media practioners, evaluators and researchers about some of what was learned through the project Cracking the Code: Influencing Millennial Science Engagement. This guide focuses on possible practices for creating an audience research collaboration for media professionals, evaluators and communication researchers.
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Scott Burg
resource research Media and Technology
The series of articles below is a study of Cracking the Code, one of the largest public investments in science media, journalism and science communication research collaborations, a project between KQED, Texas Tech and Yale Universities. KQED has the largest science reporting unit in the West focusing on science news and features including their YouTube series Deep Look.This series was written by Scott Burg from Rockman et al, the project's independent evaluator. Links to the articles in this series are below. The full articles in the series are posted on Medium. A Three Year Case Study
DATE:
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Asheley Landrum Sarah Mohamad Scott Burg
resource research Media and Technology
The news arguably serves to inform the quantitative reasoning (QR) of news audiences. Before one can contemplate how well the news serves this function, we first need to determine how much QR typical news stories require from readers. This paper assesses the amount of quantitative content present in a wide array of media sources, and the types of QR required for audiences to make sense of the information presented. We build a corpus of 230 US news reports across four topic areas (health, science, economy, and politics) in February 2020. After classifying reports for QR required at both the
DATE:
TEAM MEMBERS: John Voiklis Jena Barchas-Lichtenstein Elizabeth Attaway Uduak G. Thomas Shivani Ishwar Patti Parson Laura Santhanam Isabella Isaacs-Thomas
resource project Media and Technology
Early childhood is a critical time for developing foundational knowledge, skills, and interest in science, technology, engineering, and mathematics (STEM). For that reason, the Public Broadcasting Service (PBS) places a great priority on developing early childhood STEM content, especially through its television shows that are watched by over 60% of young children in the United States. Research suggests that adding in-the-moment interaction to television watching promotes learning and engagement. Toward this end, researchers from the University of California, Irvine and PBS KIDS have prototyped interactive versions of science shows that children view on internet-connected devices while they communicate with the main character powered by an AI conversational agent. Pilot studies show that when children watch these new interactive videos with the main character pausing periodically to ask probing questions about the learning goals of the episode and following up with appropriate responses, they are more engaged and learn more about science, with heightened benefits for children who speak languages other than English at home. Based on these early results, in this Innovations in Development project the research team will develop, test and produce publicly available conversational episodes for two PBS KIDS television shows, one focused on science and the other on computational thinking.

The project will iteratively study and develop six conversational videos with novel forms of support for children, including extended back-and-forth conversation that builds upon a child's responses, visual scaffolding that facilitates verbal communication, and bilingual language processing so that children can answer in English or Spanish. The conversational videos will be evaluated in both lab-based and home settings. The lab-based study will involve 600 children ages 3-7 in a predominantly low-income Latino community in Southern California, in which researchers compare children’s learning and engagement when watching the conversational videos with three other formats: (1) watching the non-interactive broadcast version of the video; (2) watching the video with pseudo-interaction, in which the main character asks questions and gives a generic response after a fixed amount of time but can’t understand what the child says; or (3) watching the broadcast version of the video with a human co-viewer who pauses the video and asks questions. The home-based study will involve 80 families assigned to watch either the non-interactive or interactive videos as many times as they want over a month at home. In both the lab-based and home studies, pre- and post-tests will be used to examine the impact of video watching on science and language learning, and log data will be used to assess children’s verbalization and engagement while watching. Following the home study, the six videos will be further refined and made available for free to the public through the PBS KIDS apps and website, which are visited by more than 13 million users a month. Beyond providing engaging science learning opportunities to children throughout the country, this study will yield important insights into the design, usability, feasibility, and effectiveness of incorporating conversational agents into children’s STEM-oriented video content, with implications for extending this innovation to other educational media such as e-books, games, apps, and toys.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Mark Warschauer Silvia Lovato Andres Bustamante Abby Jenkins Ying Xu
resource project Media and Technology
Cyberchase: Mobile Adventures in STEM is designed to advance the STEM learning of children ages 6-8 and engage low-income families in informal STEM interactions. Based on a successful NSF-funded pilot, the project combines the appeal of the PBS KIDS series Cyberchase and the potential of mobile texting to deliver informal learning. WNET and Education Development Center will produce: three Cyberchase videos that blend math and environmental content; a bilingual family engagement campaign in 15 communities across the U.S. that combines this media with weekly text-based engagement; and research into use and impact of the model among low-income Latinx families. Mobile Adventures addresses the need to better engage underserved families in informal science practices that are foundational for future STEM learning. While the materials target low-income communities broadly, research will focus on low-income Latinx families with children ages 6-8, an age group overlooked in previous research on educational uses of texting. A needs assessment and formative testing will ensure that the project design meets the needs and interests of diverse Latinx and other families.

The goal of Mobile Adventures is to build knowledge about how innovative, culturally responsive tools can help Latinx and low-income families engage in fun STEM learning at home. A three-tiered research study will address the question: how and to what extent does a mobile text-and-media approach to delivering informal STEM learning materials foster joint media engagement between children and parents, building new repertoires for learning together? The study will combine analysis of observation in homes and community settings, backend data, and pre/post surveys. Research will deepen understanding of effective family engagement models that make media a central component, the potential of text messaging as a stimulus to parent/child STEM learning, and maximal design of media and community engagement to serve low-income Latinx families. Findings will be disseminated through national conferences and journals. The Cyberchase videos, distributed free on broadcast and digital platforms, will build the STEM literacy of millions of diverse children, while the family engagement campaign will involve a projected 3,750 families in 15 locations. Evaluation will assess how well the project has met its goals.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Sandra Sheppard William Tally