Skip to main content

Community Repository Search Results

resource research Media and Technology
The last three decades have seen extensive reflection concerning how science communication should be modelled and understood. In this essay we propose the value of a cultural approach to science communication — one that frames it primarily as a process of meaning-making. We outline the conceptual basis for this view of culture, drawing on cultural theory to suggest that it is valuable to see science communication as one aspect of (popular) culture, as storytelling or narrative, as ritual, and as collective meaning-making. We then explore four possible ways that a cultural approach might
DATE:
TEAM MEMBERS: Sarah Davies Megan Halpern Maja Horst David Kirby Bruce Lewenstein
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource research Media and Technology
The STEM + Digital Literacies (STEM+L) project investigates science fiction composing as an effective mechanism to attract and immerse adolescents (ages 10-13) from diverse cultural backgrounds in socio-scientific issues related to environment. The participating students (G5-8) work in small groups to design and produce STEM content rich, multimedia science fictions during the summer (1 week) and the academic year (4-6 2.5hr sessions). Culminating activities include student presentations at a local science fiction film festival. The research component employs an iterative, design-based
DATE:
TEAM MEMBERS: Ji Shen Blaine Smith
resource research Public Programs
This poster was created for the Advancing Informal STEM Learning (AISL) program Primary Investigator (PI) meeting. The research presented here is a summary of the various informal STEM learning opportunities offered as part of the collaboration between university researchers and museum practionners. We were interested in how museums can advance parent-child engagment in STEM-rich tinkering and reflection. The participants were able to take part of a few different activities that allowed for informal reflection and tinkering at the Tinkering Lab, a musuem exhibit that invites families to take
DATE:
TEAM MEMBERS: Catherine Haden Tsivia Cohen David Uttal Perla Gámez
resource research Public Programs
Outreach activities at the interface of science and art present a unique opportunity to connect and engage with “latently interested” publics who do not otherwise take part in science activities like visiting science museums. In this paper, the authors present “Guerilla Science” as one model that supports the hypothesis that well-designed science + art (STEAM) programming in informal settings can broaden participation in, and facilitate engagement with STEM-related topics. This paper describes a range of interactive events featuring scientists and artists and accompanying research into the
DATE:
TEAM MEMBERS: Mark S Rosin Jen Wong Kari O'Connell Martin Storksdieck Brianna Keys
resource project Public Programs
This project, a collaboration of faculty at Pratt Institute and Oregon State University, will explore how people with low to no affinity for science, technology, engineering and math (STEM) can be introduced to STEM ideas in ways that are appropriate for their cultural identity and designed to achieve reasonable outcomes that allow for continued STEM engagement. This project will study a new model, as a small scale exemplar of how science learning can be integrated into cultural events that attract audiences who do not identify themselves as interested in science or broader concepts associated with STEM. The model integrates science with art, music and play, producing live events, games, hands-on workshops, and interactive theater productions that are intended to inspire wonder and excitement. The basic principles are: to create unique opportunities for audiences to experience science in unorthodox ways, to connect with audiences at these events, and to help scientists engage a public they do not normally reach.

The goal of this project is to formally study and improve upon the practices that have been explored to date by carefully examining the implementation at two annual FIGMENT arts festivals in New York City and to determine outcomes based on three theoretical frameworks: the six strands of science engagement proposed by the National Research Council, the concept of follow-up activity, and subsequent reinforcing experiences. Initial evaluation results indicate the model is effective in advancing informal STEM learning and providing valuable public engagement with science training and experience for scientists. Participating scientists succeed in creating interest and attentiveness in audiences that do not normally engage in science, thereby opening the door for subsequent experiences. The research will be a quasi-experimental approach to test the degree to which encounters with model's learning experiences create a higher probability to actively seek subsequent science experiences. Project deliverables include a how-to guide for professionals on expanding STEM audiences targeted at cultural institutions who want to incorporate science content into their activities, and for other institutions who want to integrate their activities into cultural settings. The how-to guide will be based on the body of research and evaluations developed that will illuminate the principles behind the model.

This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Mark Rosin
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt