Skip to main content

Community Repository Search Results

resource research Exhibitions
Given the growth of technology in the 21st century and the growing demands for computer science skills, computational thinking has been increasingly included in K-12 STEM (Science, Technology, Engineering and Mathematics) education. Computational thinking (CT) is relevant to integrated STEM and has many common practices with other STEM disciplines. Previous studies have shown synergies between CT and engineering learning. In addition, many researchers believe that the more children are exposed to CT learning experiences, the stronger their programming abilities will be. As programming is a
DATE:
TEAM MEMBERS: Hoda Ehsan Tikyna Dandridge Ibrahim Yeter Monica Cardella
resource project Exhibitions
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.

The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
DATE: -
TEAM MEMBERS: Tamara Moore Monica Cardella Senay Purzer Sean Brophy Morgan Hynes Tamara Moore Hoda Ehsan
resource research Public Programs
Engineering is a critical yet understudied topic in early childhood. Previous research has shown that even young children can engage in (versions of) engineering design practices and processes that are similar to those of adult engineers and designers. In this session, we will share and discuss current research projects to explore how different in-school and out-of-school contexts and activities support 3- to 8-year-old children as they engage in engineering design. We will consider ways that the different characteristics of the activities and spaces, as well as the practices of teachers
DATE:
TEAM MEMBERS: Scott Pattison Monica Cardella Hoda Ehsan Smirla Ramos-Montañez Gina Navoa Svarovsky Merredith Portsmore Elissa Milto Mary Beth McCormack Chris San Antonio-Tunis M. Terri Sanger
resource research Media and Technology
Communication is an essential component to scientific inquiry, and specifically the primary literature is highly valued by scientists. Yet, the role of primary literature within scientific inquiry is generally absent from the science classroom. In this study we examined how middle and high school student perceptions of scientific inquiry changed after they engaged in a peer-review and publication process of their research papers. We interviewed twelve students who published their papers in the [Journal], a science journal dedicated to publishing the research of middle and high school students
DATE:
TEAM MEMBERS: Sarah Fankhauser Gwendolynne Reid Gwendolyn Mirzoyan Clara Meaders Olivia Ho-Shing
resource research Informal/Formal Connections
This exploratory study aims to better understand how adults engage with science in the context of reallife socio-scientific issues (SSIs). Specifically, we examined how parents engage with the issue of radiation from Wi-Fi routers in schools, an issue encountered by parents across the world. Radiation from wireless internet connection (Wi-Fi) routers is a type of radio frequency electromagnetic radiation. Nowadays, exposure to RF radiation is widespread; from Wi-Fi routers in workplaces, homes, restaurants, and even buses and trains to cell phones and microwave ovens. The proliferation of
DATE:
TEAM MEMBERS: Keren Dalyot Ayelet Baram-Tsabari
resource research Public Programs
This paper contributes a theoretical framework informed by historical, philosophical and ethnographic studies of science practice to argue that data should be considered to be actively produced, rather than passively collected. We further argue that traditional school science laboratory investigations misconstrue the nature of data and overly constrain student agency in their production. We use our “Data Production” framework to analyze activity of and interviews with high school students who created data using sensors and software in a ninth-grade integrated science class. To understand the
DATE:
TEAM MEMBERS: Lisa Hardy Colin Dixon Sherry Hsi
resource research Public Programs
There is growing evidence that science capital (science-related forms of social and cultural capital) and family habitus (dispositions for science) influence STEM career decisions by youth. This study presents reliability and validity evidence for a survey of factors that influence career aspirations in science. Psychometric properties of the NextGen Scientist Survey were evaluated with 889 youth in grades 6–8. An exploratory factor analysis (EFA) found four factors (Science Expectancy Value, Science Experiences, Future Science Task Value, and Family Science Achievement Values). Using
DATE:
TEAM MEMBERS: M. Gail Jones Megan Ennes Drew Weedfall Katherine Chesnutt Emily Cayton
resource research Public Programs
The Science Fairs Under the 'Scope Study's key findings are summarized here on the topics of: Models And Elements Of Middle School Science Fairs Science And Engineering Practices Cost Of Science Fairs Parent Involvement In Science Fairs Science Interest And Identity.
DATE:
TEAM MEMBERS: Abigail Levy
resource research Public Programs
We collected data from middle school science fairs held in schools across the country to understand: What are the basic models and elements of middle school science fairs; If and how science fairs increase students’ interest in science, technology, engineering or math (STEM) and/or STEM careers If and how participation in select models of middle school science fairs enhance students’ mastery of the science and engineering practices; and What costs and resources are required to implement an effective middle school science fair?
DATE:
TEAM MEMBERS: Abigail Levy
resource research Public Programs
The goal of our research is to identify strengths and weaknesses of high school level science fair and improvements that might enhance learning outcomes based on empirical assessment of student experiences. We use the web-based data collection program REDCap to implement anonymous and voluntary surveys about science fair experiences with two independent groups -- high school students who recently competed in the Dallas Regional Science and Engineering Fair and post high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) on STEM education
DATE:
TEAM MEMBERS: Frederick Grinnell Simon Dalley Karen Shepherd Joan Reisch
resource research Public Programs
Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at
DATE:
TEAM MEMBERS: Frederick Grinnell Simon Dalley Karen Shepherd Joan Reisch
resource project Informal/Formal Connections
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.

This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.

This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Bernadette Sanchez Aerika Loyd Rex Babiera Nicole Kowrach