Skip to main content

Community Repository Search Results

resource project Public Programs
This project focuses on environmental health literacy and will explore the extent to which diverse rural and urban youth in an out-of-school STEM enrichment program exhibit gains in environmental health literacy while engaged in learning and teaching others about community resilience in the face of changing climates. Science centers and museums provide unique opportunities for youth to learn about resilience, because they bring community members together to examine the ways that current science influences local decisions. In this project, teams of participating youth will progress through four learning modules that explore the impacts of changing climates on local communities, the local vulnerabilities and risks associated with those changes, possible mitigation and adaptation strategies, and building capacities for communities to become climate resilient. After completion of these modules, participating youth will conduct a resilience-focused action project. Participants will be encouraged to engage peers, families, friends, and other community stakeholders in the design and implementation of their projects, and they will gain experience in accessing local climate and weather data, and in sharing their findings through relevant web portals. Participants will also use various sensors and web-based tools to collect their own data.



This study is guided by three research questions: 1) To what extent do youth develop knowledge, skills, and self- efficacy for developing community resilience (taken together, environmental health literacy in the context of resilience) through participation in museum-led, resilience-focused programming? 2) What program features and settings foster these science learning outcomes? And 3) How does environmental health literacy differ among rural and urban youth, and what do any differences imply for project replication? Over a two- year period, the project will proceed in six stages: a) Materials Development during the first year, b) Recruitment and selection of youth participants, c) Summer institute (six days), d) Workshops and field experiences during the school year following the summer institute, e) Locally relevant action projects, and f) End- of-program summit (one day). In pursuing answers to the research questions, a variety of data sources will be used, including transcripts from youth focus groups and educator interviews, brief researcher reflections of each focus group and interview, and a survey of resilience- related knowledge. Quantitative data sources will include a demographic survey and responses to a self-efficacy instrument for adolescents. The project will directly engage 32 youth, together with one parent or guardian per youth. The study will explore the experiences of rural and urban youth of high school age engaged in interactive, parallel programming to enable the project team to compare and contrast changes in environmental health literacy between rural and urban participants. It is anticipated that this research will advance knowledge of how engagement of diverse youth in informal learning environments influences understanding of resilience and development of environmental health literacy, and it will provide insights into the role of partnerships between research universities and informal science centers in focusing on community resilience.
DATE: -
TEAM MEMBERS: Kathleen Gray Dana Haine
resource research Public Programs
Supporting more equitable participation in science, technology, engineering, and mathematics (STEM) remains a key, persistent educational challenge. This paper employs a sociological Bourdieusian lens to explore how equitable youth outcomes might be supported through informal science learning (ISL). Drawing on multimodal, ethnographic data from four case study youth aged 11–14 from two ISL programs, we identify four areas of practice that were enacted to a greater or lesser extent in the programs in support of equitable youth outcomes. We identify how the equitable potential of these practices
DATE:
TEAM MEMBERS: Louise Archer Spela Godec Angela Calabrese Barton emily dawson Ada Mau Uma Patel
resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource project Public Programs
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:


EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.


This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.

In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nichole Pinkard Reed Stevens
resource research Public Programs
But many young people face signifcant economic, cultural, historical, and/or social obstacles that distance them from STEM as a meaningful or viable option— these range from under-resourced schools, race- and gender-based discrimination, to the dominant cultural norms of STEM professions or the historical uses of STEM to oppress or disadvantage socio-economically marginalized communities (Philip and Azevedo 2017). As a result, participation in STEM-organized hobby groups, academic programs, and professions remains low among many racial, ethnic, and gender groups (Dawson 2017). One solution to
DATE:
TEAM MEMBERS: Bronwyn Bevan Kylie Peppler Mark Rosin Lynn Scarff Lissa Soep Jen Wong
resource research Public Programs
This paper examines the differences and challenges encountered when trying to create informal blended (virtual and hands-on) engineering design STEM activities. It contrasts the creation of STEM activities for formal and informal learning environments, stressing that the differences extend far beyond the length of the activity or depth of any learning goals. The discussion begins with an examination of differences between the two learning environments that need to be taken into consideration. These differences include the physical environments, organizational structures, and the goals or
DATE:
resource research Public Programs
Background. STEM identity has emerged as an important research topic and a predictor of how youth engage with STEM inside and outside of school. Although there is a growing body of literature in this area, less work has been done specific to engineering, especially in out-of-school learning contexts. Methods. To address this need, we conducted a qualitative investigation of five adolescent youth participating in a four-month afterschool engineering program. The study focused on how participants negotiated engineering-related identities through ongoing interactions with activities, peers
DATE:
resource research Public Programs
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks
DATE:
resource project Public Programs
This three-year research and implementation project empowers middle school LatinX youth to employ their own assets and funds of knowledge to solve community problems through engineering. Only 7% of adults in the STEM job cluster are of Hispanic/Latino origin. There is a continuing need for filling engineering jobs in our current and future economy. This project will significantly broaden participation of LatinX youth in engineering activities at a critical point as they make career decisions. Design Squad Global LatinX expands on a tested model previously funded by NSF and shown to be successful. It will enable LatinX youth to view themselves as designers and engineers and to build from their strengths to expand their skills and participation in science and engineering. The project goals are to: 1) develop an innovative inclusive approach to informal engineering education for LatinX students that can broaden their engineering participation and that of other underrepresented groups, (2) to galvanize collaborations across diverse local, national, and international stakeholders to create a STEM learning ecosystem and (3) to advance knowledge about a STEM pedagogy that bridges personal-cultural identity and experience with engineering knowledge and skills. Project deliverables include a conceptual framework for a strength-based approach to engineering education for LatinX youth, a program model that is asset based, a collection of educational resources including a club guide for how to scaffold culturally responsive engineering challenge activities, an online training course for club leaders, and a mentoring strategy for university engineering students working with middle school youth. Project partners include the global education organization, iEARN, the Society of Women Engineers, and various University engineering programs.

The research study will employ an experimental study design to evaluate the impact on youth participating in the Design Squad LatinX programs. The key research questions are (1) Does participation increase students' positive perceptions of themselves and understanding of engineering and global perspectives? (2) To what extent do changes in understanding engineering vary by community (site) and by student characteristics (age, gender, ethnicity)? (3) Do educators and club leaders increase their positive perceptions of youths' funds of knowledge and their own understanding of engineering? and (4) Do university mentors increase their ability to lead informal engineering/STEM education with middle school youth? A sample from 72 local Design Squad LatinX clubs with an enrollment of 10-15 students will be drawn with half randomly assigned to the participant condition and half to the control condition. Methods used include pre and post surveys, implementation logs for checks on program implementation, site visits to carry out observations, focus groups with students and interviews with adult leaders. Data will be analyzed by estimating hierarchical linear models with observations. In addition, in-situ ethnographically-oriented observations as well as interviews at two sites will be used to develop qualitative case studies.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Mary Haggerty
resource project Public Programs
The role of afterschool programs in the science, technology, engineering, and mathematics (STEM) learning ecosystem has grown over the past two decades, which has led to increasing efforts to support and improve program quality. These efforts include developing STEM programs and curricula, creating standards for facilitating informal STEM learning experiences, building networks of support, and developing tools for assessment and evaluation. However, such efforts may have limited impact in terms of ongoing quality improvement. STEM curricula vary in disciplinary focus, quality and may not apply to local contexts and needs. Many afterschool programs resort to using simple STEM kits or online activities rather than rigorous curricula with support for educators. The project will study how the California Department of Education's (CDE) efforts to change organizational culture to support continuous quality improvement (CQI) have affected the offerings and quality of afterschool STEM in the state's more than 4,500 publicly funded afterschool sites. The EPISTEMIC project will contribute new research findings on how CQI can increase access to higher quality STEM learning opportunities for underserved youth. Even more important, the project will provide new insights on how organizational culture affects participation in and implementation of afterschool CQI.

The team will use an organizational theory framework and a mixed methods approach to conduct three research activities: (1) Describe the organizational context through interviews, participant observations, and artifact analysis to map and describe the overall support system as a context for understanding organizational culture change; (2) Describe change over time in organizational culture, CQI processes, and STEM program offerings and quality through surveys/interviews of afterschool youth, staff, directors, and grantee representatives; and (3) Generate explanations about the relationships between organizational culture, CQI, and STEM quality in different contexts through in depth case studies. Bringing organizational culture, CQI, and STEM offerings and quality into shared focus is the most important intellectual contribution of this work. Organizational theory's sensemaking concept will guide analyses to describe, exemplify, and generate theoretical explanations for patterns in organizational culture, CQI, and STEM program changes, with attention to relevant contextual factors.

Continuous quality improvement provides tools for afterschool STEM staff to identify needs and ways to improve. The EPISTEMIC study will contribute recommendations on the systemic, organizational, and cultural aspects of improvement strategies relevant to policymakers, funders, support providers, and afterschool organizations in California, as well as other state or nongovernmental support systems around the country. The study will also produce CQI guidelines for reflecting on and incorporating changes to organizational culture as part of CQI for afterschool staff and site directors. These will be helpful for practitioners around the country. The study's focus on three organizational contexts -- school district, national afterschool, and local afterschool -- will extend the relevance of the findings and recommendations, which will be disseminated through forums, workshops, and articles in practice and policy-oriented publications. The study will also benefit the research community by providing a framework and methods for studying organizational culture and CQI. The findings on the relationships between organizational culture, CQI, and STEM offerings and outcomes will provide a foundation for further research on how these relate to STEM learning outcomes for youth. EPISTEMIC is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Patrik Lundh Andrea Beesley Timothy Podkul Carrie Allen
resource project Public Programs
Research that seeks to understand classroom interactions often relies on video recordings of classrooms so that researchers can document and analyze what teachers and students are doing in the learning environment. When studies are large scale, this analysis is challenging in part because it is time-consuming to review and code large quantities of video. For example, hundreds of hours of videotaped interaction between students working in an after-school program for advancing computational thinking and engineering learning for Latino/a students. This project is exploring the use of computer-assisted methods for video analysis to support manual coding by researchers. The project is adapting procedures used for computer-aided diagnosis systems for medical systems. The computer-assisted process creates summaries that can then be used by researchers to identify critical events and to describe patterns of activities in the classroom such as students talking to each other or writing during a small group project. Creating the summaries requires analyzing video for facial recognition, motion, color and object identification. The project will investigate what parts of student participation and teaching can be analyzed using computer-assisted video analysis. This project is supported by NSF's EHR Core Research (ECR) program, the STEM+C program and the AISL program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. The project is funded by the STEM+Computing program, which seeks to address emerging challenges in computational STEM areas through the applied integration of computational thinking and computing activities within disciplinary STEM teaching and learning in early childhood education through high school (preK-12). As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The video analysis systems will provide video summarizations for specific activities which will allow researchers to use these results to quantify student participation and document teaching practices that support student learning. This will support the analysis of large volumes of video data that are often time-consuming to analyze. The video analysis system will identify objects in the scene and then use measures of distances between objects and other tracking methods to code different activities (e.g., typing, talking, interaction between the student and a facilitator). The two groups of research questions are as follows. (1) How can human review of digital videos benefit from computer-assisted video analysis methods? Which aspects of video summarization (e.g., detected activities) can help reduce the time it takes to review the videos? Beyond audio analytics, what types of future research in video summarization can help reduce the time that it takes to review videos? (2) How can we quantify student participation using computer-assisted video analysis methods? What aspects of student participation can be accurately measures by computer-assisted video analysis methods? The video to be used for this study is drawn from a project focused on engineering and computational thinking learning for Latino/a students in an after-school setting. Hundreds of hours of video are available to be reviewed and analyzed to design and refine the system. The resulting coding will also help document patterns of engagement in the learning environment.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Marios Pattichis Sylvia Celedon-Pattichis Carlos LopezLeiva
resource project Media and Technology
It is estimated that there could be 40 billion earth-sized planets orbiting in the habitable zones of stars in the Milky Way. Major advances in long range telescopes have allowed astronomers to identify thousands of exoplanets in recent decades, and the discovery of new exoplanets is a now a common occurrence. Public excitement for the discoveries grown alongside these discoveries, thus opening new possibilities for inspiring a new generation of scientists and engineers that may dream of one day visiting these planets. This project investigates the use of interactive, intelligent educational technologies to generate interest in STEM by allowing learners to explore and even create their own exoplanets. Research will occur across several informal learning contexts, including summer camps, after school programs, planetarium shows, and at home. The approach is based on the idea of "What if?"questions about Earth (e.g., "What if the Moon did not exist?"), designed to trigger interest in STEM and frame exploratory and elaborative discussions around hypothetical science questions that are subsequently linked to the search for habitable exoplanets. Learners are able to interact with and explore scientifically accurate simulations of alternative versions of Earth, while making observations and posing explanations for what they see. Technology-based informal learning experiences designed to act as triggers for and sustainment of interest in STEM have the potential to plug the leaky STEM pipeline, and thus have profound implications for the future of science and technology in the United States.

The project seeks to advance the science of designing technologies for promoting interest in STEM and informal astronomy education in several ways. First, the project will develop simulations for exploratory learning about astronomy and planetary science. These simulations will present hypothetical worlds based on what-if questions and feasible models of known exoplanets, thus giving learners a chance to better understand the challenges of finding a habitable world and learning about what is needed to survive there. Second, a new PBS NOVA Lab will be developed that will focus on Exoplanet education. This web-based activity has the potential to reach millions of learners and will help them understand how planets are formed and the requirements for supporting life. Learners who use the lab will have an opportunity to invent their own exoplanets and export them for first-person exploration. Third, researchers on the project will design and implement Artificial Intelligence-based pedagogical agents to support learning and promote interest. These agents will inhabit the simulations with the learner, acting as a coach and guide, and be designed to be culturally responsive and personalized based on learner preferences. Fourth, interactive exoplanet-focused planetarium shows, that will involve live interaction with simulations, will take place at the Fiske Planetarium (Boulder, CO). Finally, the project will develop a server-based infrastructure for tracking and supporting long term development of interest in STEM. This back-end will track fine-grained behaviors, including movement, actions, and communications in the simulations. Such data will reveal patterns about how interest develops, how learners engage in free-choice learning activities, and how they interact with agents and peers in computer simulations. A design-based research methodology will be employed to assess the power of these different experiences to trigger interest and promote learning of astronomy. A range of different pathways for interest in STEM will therefore be considered and assessed. Research will measure the power of these experiences to trigger interest in STEM and promote re-engagement over time. Innovation lies in the use of engaging and intelligent technologies with thought-provoking pedagogy as a method for extended engagement of diverse young learners in STEM. Project research and educational resources will be widely disseminated to researchers, designers developers and the general public via peer-reviewed research journals, conference presentations, informal STEM education networks of science museums, children's museums, Fab Labs, and planetariums, and public media such as public television's NOVA science program website.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: H Chad Lane Neil Comins Jorge Perez-Gallego David Condon