Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Ibrahim Dahlstrom-Hakki Jamie Larsen Adam Lalor
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource evaluation Exhibitions
Prototype exhibits of "The Universe by the Powers of Ten" illustrated in three dimensions an exponential journey away from earth. The goal of the summative evaluation, implemented by Multimedia Research, was to assess the educational impact of the exhibits and accompanying interpretive techniques, for both non-school adult and teen samples and 6th grade school samples in the Maryland Science Center and the Montshire Museum of Science. Two interpretive conditions were compared - a printed handout and an explainer presentation. Further, the Montshire non-school sample experienced a third
DATE:
TEAM MEMBERS: Barbara Flagg
resource project Public Programs
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
DATE: -
TEAM MEMBERS: Ann McMahon
resource project Media and Technology
This CRPA award deals with inspiring youth to science careers and specifically in space science. The Green Bank Telescope in collaboration with the Pulsar Search Collaboratory, the National Radio Astronomy Observatory, and West Virginia University will develop a documentary film describing what pulsars are, how they are identified, and how youths participate in these investigations and discoveries. Through this experience youths learn aspects of space science, mathematics, physics, and computational science. Several young students have discovered new pulsars. The film will describe the concepts behind pulsars, how they are identified, and how the students can participate. The idea here is that potential students will see that other kids are participating and they may be successful as well. In the film, several well known scientists will be interviewed including Neil degrasse Tyson, Director of the Hayden Planetarium and Dame Jocelyn Bell-Burnell, the lady in Great Britain who discovered the first pulsar. Moreover, they will interview several young scientists who discovered the most recent pulsars through this program. The objectives of this effort are to be inspirational to young people and to engage the public with the concepts of space science and pulsars.
DATE: -
TEAM MEMBERS: Maura McLaughlin Sue Ann Heatherly Rachel Rosen Sarah Scoles
resource project Media and Technology
The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
DATE: -
TEAM MEMBERS: Lisa Gugenheim
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Afterschool Programs
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:


Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders


To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS: Missouri AfterSchool Network Jeff Buehler
resource project Media and Technology
The project includes a simulation based Family Learning Program to be administered through the International Challenger Learning Center (CLC) network. The goal is to develop families' skills in learning as a team through science, math and technology (SMT) in an environment where parents and children are co-travelers in a world of ideas. PACCT is disseminated through ten of the Challenger Learning Centers reaching 22,000 families nationwide. Many of these activities are completed in the home at no cost to the anticipated 12,500 participating families. Through this network of centers, all types of communities are served in many states. The activities include Sim-U-Voyages, where family teams work at home; Sim-U-Challenges, where families create a physical model responding to a challenge; Sim-U-Visits, where families hear from scientists and work as scientists in a team solving a problem; and Sim-U-Ventures, which result in flying a mission. Cost sharing is 8%.
DATE: -
TEAM MEMBERS: Linda Morris Jan Anstatt
resource project Public Programs
The project includes a simulation based Family Learning Program to be administered through the International Challenger Learning Center (CLC) network. The goal is to develop families' skills in learning as a team through science, math and technology (SMT) in an environment where parents and children are co-travelers in a world of ideas. PACCT is disseminated through ten of the Challenger Learning Centers reaching 22,000 families nationwide. Many of these activities are completed in the home at no cost to the anticipated 12,500 participating families. Through this network of centers, all types of communities are served in many states. The activities include Sim-U-Voyages, where family teams work at home; Sim-U-Challenges, where families create a physical model responding to a challenge; Sim-U-Visits, where families hear from scientists and work as scientists in a team solving a problem; and Sim-U-Ventures, which result in flying a mission. Cost sharing is 8%.
DATE: -
TEAM MEMBERS: Linda Morris Jan Anstatt
resource project Media and Technology
This project for six (6) months' duration will bring advisors and designers together to plan an environment of interactive touch-screen displays to draw high-school students and their parents into thoughtful consideration of careers in science, mathematics, and technology. Housed at Kennedy Space Center's Visitor Center and in keeping with the theme of space exploration, the visitor will become a crewmember on a future voyage and solve problems encountered on the journey via computer simulations. Veteran astronauts will narrate the scenarios, since they have actually encountered unexpected problems in space. The proposed final exhibit will have six (6) stations, each featuring a different episode and levels of complexity of a common storyline. After solving the problem using math, science, technology and critical thinking skills, a registration mechanism will enable the student to request information on spedific careers and information about post-secondary schools that offer such training.
DATE: -
TEAM MEMBERS: Gene Tavares Walter Jaworski
resource project Media and Technology
The excitement of astrophysical research and discovery is brought into the high school science and mathematics classes through a flexible set of student activities and projects on variable stars. The project includes a computerized database, of 400,000 measurements of brightness of 150 variable stars in five constellations over 25 years, from which students can deduce properties, processes, and evolution of these stars. Students can make additional measurements and discoveries from carefully selected time sequences of 125 35mm slides or from actual measurements from the night sky. A comprehensive student manual and instructional videos make the materials self-contained and easy to use. The teacher manual enables the instructor to adapt the materials to skills, objectives and local curricula. The material can be used in a variety of contexts: traditional mathematics and science classes at both the high school and college level, independent projects, summer institutes, and community science clubs. The material will be field tested in classes and refined through workshops with teachers. A newsletter and a video about amateur astronomers is planned.
DATE: -
TEAM MEMBERS: Janet Mattei John Percy