Skip to main content

Community Repository Search Results

resource project Public Programs
Situated within the Advancing Informal STEM Learning program, this Research in Service to Practice award seeks to design, implement, and evaluate an intervention aimed at fostering a culture of productive failure practices. The project responds to a broad concern in educational research and practice: Experiences of failure are frequently so negative that students shut down, lose agency, and develop low self-efficacy and learned helplessness. Surrendering too quickly to obstacles is particularly unfortunate, given evidence that initially "getting it wrong" ultimately breeds deep and sustained learning. In order to learn how students can make the most of productive failure, the proposed project will study how a community of practice that includes middle school youth and their mentors attempts to change its handling of learning obstacles. Building on prior research documenting storytelling practices in an afterschool program, the team now aims to embolden young students' productive practices of failure storytelling in computer science, a field in which experts practice candid, pervasive, and collaborative discourse around errors ("bugs"). Pulling together the domains of narrative analysis, meta-cognitive reflection, and control theories of motivation, within the context of authentic computer-science debugging activity, this study develops a theoretical framework that views productive responses to failure as a discipline-specific process of reflecting as a community on how to locate obstacles, how to construct causal theories about why those obstacles emerged, and how to plan productive responses. A design-based research approach will investigate three questions: (1) What is the impact of the interventions on students and instructors' actions and discourse when they are debugging errors in computer code? (2) What is the impact of the interventions on students and instructors' reflections back on their prior debugging experiences and on failure in general? and (3) What is the impact of the instructor-development efforts on the instructors' capacity to foster students' productive attitudes toward failure? The study focus will be 15 summer and weekend coding workshops with 5th-8th grade students from populations typically under-represented in STEM. The interventions are (a) setting new norms and practices for debugging, (b) instructor education, and (c) coding software that provides students with feedback on their productive struggle. Data sources include video and audio recordings of the learning environment, artifacts produced during the activities, and semi-structured interviews. Measures will capture variations in debugging activities, reflections on debugging, students' ideas about grit and growth mindset, and instructors' struggles and successes with the new curriculum. The empirical results will consist of mixed-methods, micro-longitudinal accounts of how a community of practice works to reform its orientation to failure. The products of this work include empirical knowledge, theory, and curriculum about how learning communities help students develop robust and efficient responses to failure. These will be disseminated through journals, open-source software, and workshops/conferences for researchers and practitioners working with youth afterschool programs. The products may be useful for exploring practices in the classroom. This project is being conducted by the 9 Dots Community Learning Center, UCLA and UC Berkeley.
DATE: -
TEAM MEMBERS: Melissa Chen Dor Abrahamson Noel Enyedy Francis Steen David DeLiema
resource project Media and Technology
Currently, many young people - especially girls and youth of color - lose confidence and interest in science, technology, engineering and math (STEM) pathways due to a perceived disconnect between their own identity and STEM fields. To address this challenge, Twin Cities PBS (TPT) is implementing SciGirls CONNECT2. This three-year Research in Service to Practice award examines how gender equitable and culturally responsive teaching strategies influence middle school girls' confidence, interest and motivation around STEM studies, and their choices around STEM careers. A set of research-based strategies, called the SciGirls Seven, are currently employed in SciGirls, an NSF-funded informal STEM educational outreach program serving 125+ educational partner organizations nationwide. The goal is to update and enrich the SciGirls Seven, providing educators with a critical, current, and more effective resource to motivate girls in STEM studies and careers. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

Florida State University will conduct a formal research study investigating the hypothesis that STEM programs that use gender equitable and culturally responsive strategies contribute to girls' positive STEM identity development, including their sense of self-efficacy, persistence and aspirations around future STEM careers. This research will include a literature review and a study of girls' STEM identity creation. The mixed methods study will include quantitative and qualitative data collection and analysis measuring changes in students' STEM identity and teachers' confidence in STEM teaching. The quantitative data will come from the student, parent and teacher pre/post surveys. The qualitative research will be conducted via case studies at four sites and the qualitative data will include observations, focus groups and interviews. Girls at all partner sites will create videos that will allow the research team to gather additional insight. The independent firm Knight Williams, Inc. will conduct the project's external evaluation.

The project will work with a subset of 16 current SciGirls partners. These geographically diverse partners will reach youth in all-girls and co-ed informal STEM education programs in a variety of settings. More than half serve Hispanic or other minority populations. The updated strategies will be disseminated to the 2,500 educators within the SciGirls partner network and the 18,800 STEM education organizations of the National Girls Collaborative Project (NGCP) network. Dissemination of the strategies and literature review will focus on the informal STEM education field through publications and presentations, posts at PBS LearningMedia, a free online space reaching 1.5 million teachers and educators.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Roxanne Hughes Alicia Santiago
resource project Public Programs
Young people learn about science, technology, engineering, and math (STEM) in a variety of ways and from many sources, including school, the media, personal experiences, and friends and family. Yet STEM participation and identification by youth are not equal across social, economic, and cultural communities. This project will study a long-term, out-of-school program for high school-age youth, who are from groups under-represented in STEM academics and careers: girls, youth from low-income households, and youth of color. Located in the urban context of the Science Museum of Minnesota, the Kitty Andersen Youth Science Center (KAYSC) engages youth in applying culturally rich STEM content to work toward social justice and community building. Specifically, this project will examine how the learning practices of the KAYSC model support youth in identifying with, engaging in, and participating in STEM. Through studying the KAYSC's STEM Justice model, which centers youth as learners, teachers, and leaders who address critical community issues through STEM, this project will develop resources that informal science educators in a variety of contexts and programs can use to promote positive social change, equity, inclusion, and applied STEM learning.

The Science Museum of Minnesota will use design-based implementation research to study this model. This research will draw on and further the emerging theoretical framework of science capital. Science capital attempts to capture multiple aspects of science learning and application, including science knowledge, social and cultural resources, and science-related behaviors and practices. Empirically developing the theory of science capital has the potential to build concrete understanding of how to address inequalities in science participation. Four teams will work independently and collaboratively to do so: an adult research team, a high school youth research team, a practitioner team, and a co-design team composed of representatives from the other three teams. Research teams will collect data in the form of observations, semi-structured interviews, practitioner activity reports, artifacts, and the experience sampling method. Initial cycles of design will occur at the Science Museum of Minnesota as researchers and practitioners document, analyze, and iteratively design learning practices within the STEM Justice model. In the second half of the grant, the team will work with an external out-of-school time youth leadership site to implement the redesigned model. Participatory research and design methods involving both youth and adults can advance understanding of what makes out-of-school time STEM learning meaningful, relevant, and successful for marginalized youth and their communities. Grounded in culturally and socially relevant, community-based resources and programming, this project will study how leveraging STEM out-of-school time learning connected to social justice can broaden access to STEM as well as develop workforce, and leadership, and STEM skills by under-represented youth. The project also builds staff capacity for promoting equity and access in informal learning settings.

This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Shannon McManimon Zdanna King Joseph Adamji Aiyana Machado Choua Her
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Using hand-held mobile devices this project would test specialized Signing Glossaries for Science Exhibits (SGSE). The glossaries are developed from 5000 unique signing terms specific to the science in 6 partner institutions and designed to reach families with at least one member, ages 5-12+, who is deaf or hard of hearing and uses American Sign Language (ASL) for communication. The project would demonstrate the potential effectiveness of the venue-specific signing glossaries to enhance access to STEM learning during visits to informal STEM learning environments such as aquariums, botanical gardens, natural history museums, nature centers, science museums, and zoos.

While utilizing existing domain specific signing terms, the project will adapt and improve on their use in content specific informal science venues to increase the opportunity for the target audience to both enjoy and benefit from the wide array of informal science learning opportunities available to this group. The research should reveal how this approach might benefit those with other types of disabilities. The research questions are designed to understand both how family members might interact with a hearing disabled family member as well as how the disabled individual might learn more about a variety of STEM content in a setting that is not domain specific but uses the influence of science exhibits to inform, engage and interest members of the public generally.

Domain specific signing dictionaries have been developed, many by this PI, to address access to content specific topics in STEM. This proposal extends this concept to informal learning environments that are content specific to increase the opportunity for those with hearing disabilities to increase their capability to both enjoy informal science learning venues and to understand more of what these venues provide in terms of science learning.
DATE: -
TEAM MEMBERS: Judy Vesel
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds efforts that seek to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will achieve these aims by identifying and closely evaluating critical factors and processes that are necessary to effectively broaden access and sustain professional learning (PL) for educational professionals working within informal STEM learning (ISL) settings. The context for this work builds on an evidence-based and nationally field tested professional learning model, Reflecting on Practice (RoP). This model will be refined to provide ISL educators with increased access to a proven PL curriculum via an in-person or blended approach, enhanced localized support, and cultivated regional professional learning communities. There is still little known about the effectiveness of blended PL within informal contexts. The emphasis on greater accessibility to PL is particularly important to the ISL field, given the significant number of informal STEM educators and institutions in underserved and remote locations, often facing disparate and insurmountable challenges in access to high quality STEM professional development. This modular program will not only target a broad range of informal institutions; varying in size, STEM content foci, geographic location and communities served but it is also uniquely designed for institutional customization and adoption, further increasing the likelihood of wide-spread uptake, participation, and engagement. If successful, this broad implementation effort will directly impact over 3,000 informal science educators and professionals in nearly 350 informal STEM learning institutions across the country. The intended theory of action and iterative, design-based implementation approach will be closely monitored, documented and analyzed by an experienced team of external evaluators, using formative and summative evaluative methods. A mixed methods approach will be employed to: (a) examine the effectiveness and accessibility of blended PL and regional PLCs for the ISL field, (b) identify critical design features in blended PL and regional PLCs for impacting educators' practice, (c) determine how PLCs can develop and continue in ISL through looking at what system of support is needed, and (d) ascertain the effective role of the Leaders and Leadership Sites. Data will be collected at all levels - from the RoP directors and PIs, document reviews, interviews and observations with RoP leaders at the six partnering institutions, and surveys with the RoP facilitators (n=700) and informal STEM educator participants (n=2,000). The results of the findings could be instrumental in the development of future frameworks and models designed to broadly disseminate similar professional learning models effectively within ISL contexts.
DATE: -
TEAM MEMBERS: Lynn Tran Catherine Halversen Kalie Sacco Sarah Pedemonte
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This proposed effort embraces broad participation by the three Ute tribes, History Colorado, and scientists in the field of archaeology to investigate and integrate traditional ecological knowledge and contemporary Western science. The project will preserve knowledge from the Ute peoples of Colorado and Utah, including traditional technology, ethnobotany, engineering and math. Results from this project will inform educational efforts in similar communities.

This project will build on the long-standing collaborations between History Colorado (HC), the Southern Ute Indian Tribe, Ute Mountain Ute Tribe and Ute Indian Tribe, Uintah & Ouray Reservation, and the Dominguez Archaeological Research Group DARG). HC will implement and evaluate a regional informal learning collaboration focused on Ute traditional and contemporary STEM knowledge serving over 128,000 learners through tribal programs, local history museums and educational networks. This project will advance the understanding of integrated knowledge and the role of Ute people as STEM learners and practitioners. This Informal Science Learning project will increase lifelong STEM learning in rural communities and create a replicable model for collaboration among tribes, history museums, and scientists.
DATE: -
TEAM MEMBERS: Liz Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE: -
TEAM MEMBERS: Corrin Barros Koh Ming Wei Danko Tabrosi Emerson Odango
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane
resource project Professional Development, Conferences, and Networks
The Center for Advancement of Informal Science Education (CAISE) is a National Science Foundation (NSF) funded resource center, working in cooperation with the NSF Advancing Informal STEM Learning (AISL) program to build and advance the informal STEM education field. CAISE continues the work it began in 2007--serving professional audiences in informal STEM learning, which includes those working in science centers and museums, zoos and aquariums, parks, botanical gardens and nature centers, events and festivals, libraries, making and tinkering spaces, media (TV, radio, film, social), cyberlearning and gaming, and youth, community, and out-of-school time programs.

What We Do:

CAISE seeks to characterize, highlight, and connect quality, evidence-based informal STEM learning work supported by a diversity of federal, local, and private funders by providing access to over 8,000 (and growing) resources that include project descriptions, research literature, evaluation reports and other documentation on the InformalScience.org website. In addition, CAISE convenes inquiry groups, workshops and principal investigator meetings designed to facilitate discussion and identify the needs and opportunities for informal STEM learning.

In this award, CAISE is also tasked with advancing and better integrating the professional fields of informal STEM learning and science communication by (1) broadening participation in these fields, (2) deepening links between research and practice, and (3) building capacity in evaluation and measurement. These activities are being undertaken by cross-sector task forces of established and emerging who will be responsible for conducting field-level analyses, engaging stakeholders, and creating roadmaps for future efforts. CAISE is also building on existing communication channels for dissemination to the larger field, and through the InformalScience.org website. An External Review Board and Inverness Research are providing oversight of CAISE's program activities and evaluation of the center.

Who We Are:

CAISE operates as a network of core staff housed at the Association of Science-Technology Centers (ASTC) in Washington, D.C. and co-principal investigators and other collaborators at academic institutions and informal STEM education (ISE) organizations across the U.S. Other key collaborators are the American Association for the Advancement of Science's Center for Public Engagement with Science, the National Informal STEM Education Network, and Arizona State University.
DATE: -
resource project Exhibitions
The Orlando Science Center (OSC) in partnership with BASE Camp Children's Cancer Foundation and the University of Central Florida (UCF) will engage chronically ill children (cancer, sickle-cell, HIV/AIDS, etc.) and other Orlando area youth ages 10-18 who face the greatest educational disparities in NASA-themed Aeronautics, Space Exploration, and Space Science exhibits through a STEM engagement and educator professional development project entitled STEM Satellites: A Mobile Mathematics and Science Initiative for Orlando Metropolitan Area Children's Hospitals. OSC will partner with educational researchers, evaluators, and planetary scientists from the University of Central Florida to create three mobile exhibits for each of the three children's hospitals in the Orlando metropolitan area. Two additional sets of the three mobile carts will be used at OSC and UCF. The three mobile exhibits will be based on the planned NASA missions that the UCF planetary scientists are leading including a Mars-themed exhibit focusing on space exploration, an asteroid-themed exhibit, and an exhibit on microgravity. Each cart will include multiple STEM activities that incorporate NASA data and artifacts from prior NASA missions, UCF planetary science collections, and Kennedy Space Center. OSC will provide professional development and training to BASE Camp volunteers who will supervise the use of the mobile exhibits in the hospitals. These exhibits will provide authentic experiences that mirror current and planned NASA missions at a level that the children can understand. These hands-on and engaging exhibits will not only help motivate children to pursue STEM careers but will also help educate the general public about the exciting and important work that NASA carries out. Providing this level of engaging and authentic STEM activities through the mobile exhibits to this historically underrepresented population is unprecedented.
DATE: -
TEAM MEMBERS: JoAnn Newman Josh Colwell Brandan Lanman Megan Nickels
resource project Exhibitions
Life on the Edge will be a 1,500-sq-ft traveling exhibition to engage museum guests with space, space exploration, and the search for life beyond our home planet through the lens of Earth's extremophiles. The exhibition will explore life forms in extreme, harsh environments on Earth, and how studying these creatures informs the search for extraterrestrial life and habitable environments within and beyond our solar system. This exhibition will provide open-ended challenges and hands-on activities that utilize NASA research and educational materials to inspire elementary-aged youth ages 5-11 and their families. Based in Ithaca, NY, Sciencenter will focus the tour on small, rural museums, including SpectrUM Discovery Area (Missoula, MT), Flathead Reservation (MT), Science Zone (Casper, WY), and Imagination Place Children's Museum (Gadsden, AL). Schools and other community partners of the host museums will be leveraged in presenting family science nights, field trips, and facilitated science programs. These activities will provide additional opportunities for learners to increase their knowledge of core STEM content and science-process skills related to astronomy and astrobiology. In this institutional engagement project, Sciencenter will partner with (1) Cornell University's Department of Astronomy throughout the 5-year grant period to develop the scientific content and to ensure that content remains current and relevant with up-to-date NASA research, and (2) the University of Montana's SpectrUM Discovery Area, who will serve as the STEM outreach hub for the region, including outreach with youth of the Flathead Reservation. The expected short-term outcomes for youth ages 5-11, after visiting Life on the Edge are (1) 75% of participants will have increased understanding of basic principles of astrobiology and astronomy, along with the breadth of NASA scientific research and missions, and (2) 50% of participants will have increased awareness of career possibilities in STEM, specifically astrobiology, astronomy, and related space sciences.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Alexander Hayes Lisa Kaltenegger Holly Truitt Adrienne Testa Charlie Trautmann
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay