Skip to main content

Community Repository Search Results

resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource project Media and Technology
In partnership with the University of Pennsylvania's Graduate School of Education, The Franklin Institute Science Museum will develop, test, and pilot an exportable and replicable cyberlearning exhibit using two cutting edge technologies: Augmented Reality (AR) and Virtual Reality (VR). The exhibit's conceptualization is anchored in the learning research vision of the NSF-funded workshop Cyberinfrastructure for Education and Learning for the Future (Computing Research Association, 2005). The incorporation of VR and AR technologies into the Franklin Institute's electricity and Earth science exhibits is an innovation of traditional approaches to hands-on learning and will improve the quality of the learning experience for the primary audience of families with children and elementary school groups. The project has implications for future exhibit development and more broadly, will provide new research on learning on how to incorporate cyberlearning efforts into traditional exhibits. Fifteen participating exhibit developers across the ISE field will assist in the evaluation of the new exhibit; receive training on the design and development of VR and AR exhibits for their institutions; and receive full access to the exhibit's new software for implementation at their informal learning sites. The technology applications will be developed by Carnegie Mellon University's Entertainment Technology Center--leaders in the field in Virtual Reality design and development. Front-end and formative evaluation will be overseen internally by the Franklin Institute. The Institute for Learning Innovation will conduct the summative evaluation. Research will be conducted by the University of Pennsylvania's Graduate School of Education on the effects of AR and VR technologies on exhibit learning.
DATE: -
TEAM MEMBERS: Steven Snyder Karen Elinich Susan Yoon
resource research Media and Technology
When it comes to STEM education, the nation’s K–12 public schools cannot do it all. The nature of 21st century proficiency in science, technology, engineering, and mathematics is too complex for any single institution. The good news is that schools do not have to do it alone. Museums, zoos, nature centers, aquariums, and planetariums are among the several thousand informal science institutions in the United States that regularly engage young people in observing, learning, and using STEM knowledge and skills. Providing a richness of resources unavailable in any classroom, informal science
DATE:
TEAM MEMBERS: Community for Advancing Discovery Research in Education (CADRE)
resource project Public Programs
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-11 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at the museums and in their own communities. The events focused on environmental topics that are especially relevant to urban communities, including broad topics such as climate change and the energy cycle to more specific topics such as animals and habitats in urban neighborhoods.
DATE: -
resource research Public Programs
The Universally Designed Museum Programming project was envisioned as a way to create public programs that are more inclusive of people with disabilities. We used the concepts of universal design and Universal Design for Learning as well as our prior experiences with these topics in exhibition design and nanotechnology programming as a foundation for our work. Through this project, we gained insight into building a community of interest, facilitating a charrette in an inclusive way, using universal design guidelines to develop programs, and measuring the effectiveness of our process.
DATE:
TEAM MEMBERS: Juli Goss Christine Reich Susan Stoessel Stephanie Iacovelli
resource project Exhibitions
This project entails the creation of a coordinated colony of robotic bees, RoboBees. Research topics are split between the body, brain, and colony. Each of these research areas is drawn together by the challenges of recreating various functionalities of natural bees. One such example is pollination: Bees coordinate to interact with complex natural systems by using a diversity of sensors, a hierarchy of task delegation, unique communication, and an effective flapping-wing propulsion system. Pollination and other agricultural tasks will serve as challenge thrusts throughout the life of this project. Such tasks require expertise across a broad spectrum of scientific topics. The research team includes experts in biology, computer science, electrical and mechanical engineering, and materials science, assembled to address fundamental challenges in developing RoboBees. An integral part of this program is the development of a museum exhibit, in partnership with the Museum of Science, Boston, which will explore the life of a bee and the technologies required to create RoboBees.
DATE: -
TEAM MEMBERS: Robert Wood Radhika Nagpal J. Gregory Morrisett Gu-Yeon Wei Joseph Ayers
resource project Media and Technology
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
DATE: -
TEAM MEMBERS: Rutgers University Carrie Ferraro
resource project Media and Technology
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
DATE: -
TEAM MEMBERS: Yasmin Kafai Karen Elinich Orkan Telhan
resource project Media and Technology
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
DATE: -
TEAM MEMBERS: Barietta Scott
resource project Media and Technology
QUEST Beyond Local is a consortium of six public media providers across the country coming together in a unique collaborative structure to foster widespread STEM literacy for general audiences; support formal and informal education outcomes in the sciences; and revive ailing science and environment journalism in the face of its rapid decline. QUEST Beyond Local is built on the success of the local, cross-editorial QUEST model, in which media making professionals from multiple disciplines--radio, television, web, and especially education--collaborate to distribute high-quality content to general and underserved audiences. Two years ago, KQED (serving Northern California) introduced a capacity-building effort with five other public media stations serving markets across the nation: Seattle (KCTS), Wisconsin (WPT/WPR), Nebraska (NET), Cleveland (ideastream), and North Carolina (UNC-TV). On the heels of this pilot process, QUEST Beyond Local will expand production in all markets and focus its multimedia efforts around the theme "Science of Sustainability" so as to achieve maximum effect on critical STEM outcomes in formal and informal education settings, and to foster science/environment literacy among a wide general audience. QUEST Beyond Local is defined by an organizationally and technologically innovative model of content creation: a newsroom structured according to a hub and spoke model; with common branding, technical, and style guidelines; and with a central coordinating and editorial office liaising between local production teams. Under the guidance of this central office, the collaborative seeks to create content with both local authority and national relevance. Building on existing media impact research, and previous research and evaluation of QUEST, research firm Rockman et al will apply evaluation theory to determine: (1) the structures and strategies to a successful STEM collaborative that contribute to a greater understanding of and engagement in science and environment topics; and (2) determine the interests, priorities, and media consumption habits of local and national STEM audiences. Primary project deliverables include three diverse multimedia packages for general and professional audiences, focusing on three main themes and anchored in STEM disciplines. In total, the three packages will include: 18 television segments; 6 half-hour television programs; 20 radio reports; 18 "web extras" (slide shows, maps, etc.); 12 web-based videos; 144 blog posts; 18 education "explainers"; 5 educator trainings; and a comprehensive distribution and social media campaign. All efforts will be supported by at least 18 science community partners, including zoos, museums, aquariums, research centers, and others. Through these efforts, the collaborative seeks to repair the systemic damage done by years of neglect to science/environment journalism--particularly the marked decline in this type of coverage over the last decade. This decline is perhaps related to the observed disconnect between the public and scientific knowledge, despite a demonstrated public appetite for science content and educators' reported desire for more resources and professional development opportunities focused on STEM topics. At a time when an evolving workforce and economy increasingly demand STEM skills and environmental literacy, QUEST Beyond Local will contribute resources to address these challenges.
DATE: -
TEAM MEMBERS: Sue Ellen McCann Shannon Vickery Kathy Bissen
resource project Public Programs
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
DATE: -
resource evaluation Media and Technology
The University of Southern California's Institute for Creative Technologies (ICT) and the Museum of Science, Boston (MoS) were awarded an Informal Science Education grant from the National Science Foundation (#0813541) for the project, Responsive Virtual Human Museum Guide. The goal of the project was to use computer-generated character animation, artificial intelligence, and natural language processing to create interactive characters, or virtual humans, that could engage in face-to-face communication with museum visitors. During the three year project, the MOS and ICT project teams created
DATE:
TEAM MEMBERS: Susan Foutz Jeanine Ancelet Kara Hershorin Liz Danter University of Southern California Museum of Science