Skip to main content

Community Repository Search Results

resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource project Public Programs
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.

Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Maria Olivares Eli Tucker-Raymond Edna Tan Jill Castek Cynthia Graville
resource research Public Programs
Providing an original framework for the study of makerspaces in a literacy context, this book bridges the scholarship of literacy studies and STEM and offers a window into the practices that makers learn and interact with. Tucker-Raymond and Gravel define and illustrate five key STEM literacies—identifying, organizing, and integrating information; creating and traversing representations; communicating with others for help and feedback during making; documenting processes; and communicating finished products—and demonstrate how these literacies intersect with making communities.
DATE:
resource evaluation Media and Technology
Learning to See, Seeing to Learn is a National Science Foundation-funded project to develop www.macroinvertebrates.org, a digital observation tool and set of informational resources that can supplement volunteer biomonitoring trainings and improve aquatic macroinvertebrates identification. Project researchers are interested in how trainers and volunteers use the tool, as well as how training that incorporates the tool impacts volunteers’ confidence in and accuracy around aquatic macroinvertebrates identification. In November 2018, project partner, Stroud Water Research Center, conducted a
DATE:
TEAM MEMBERS: Camellia Sanford-Dolly
resource project Media and Technology
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The public must be made aware in a clear, responsible way about the role of science to help bring this pandemic under control and prevent future outbreaks. This project will allow the NewsHour to go beyond their daily reporting of the medical information about the pandemic, to inform the public about the difference scientific research/ research conducted by scientists and medical professionals can make in attacking such a dire threat. The PBS NewsHour has the capability to quickly mobilize its science journalists and national distribution infrastructure to produce at least six broadcast segments and additional digital materials reporting on this on-going scientific work. They will interview scientists, researchers and experts in genomic analysis, computer tracking, vaccine production, and social epidemiology showing what they are doing to test, treat, track and stop the spread of COVID-19, to create vaccines that may prevent further transmission, and to measure the social impact of the disease. These segments will be broadcast nationwide on local PBS stations and distributed on their website, YouTube, and social media channels. Viewership of the NewsHour is extensive reaching 2.5 million people nightly via broadcast and almost 33 million YouTube views per quarter. During a recent quarter, they reached 72.6 million on Facebook and garnered 86.8 million Twitter impressions.

The research team, Knology, will conduct a study to assess 1) where US adults are primarily getting information about COVID-19; 2) their perception of personal and public responsibility; 3) behaviors they have taken and/or plan to take, and when; 4) their social values. Knology will develop a survey instrument with adopted items and modules used in prior collaborations to develop a baseline understanding of the relationship between news consumption and attitudes about COVID-19 risk. The survey will be hosted using Qualtrics. Survey data will be gathered from a representative sample of US adults (N = 1000) recruited using the online software system, Prolific. A recent PBS NewsHour/NPR/Marist poll will be used as a baseline. Once potentially identifying information like demographics are aggregated, these formative data and topline results will be shared openly through the Knology website to support other researchers and journalists.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Patti Parson
resource research Public Programs
This blog post describes a Teen Science Café in Oxford Hills, Maine, which featured the role of drones in emergency response. Colonel Dan Leclair of the University of Maine at Augusta brought drones of all sizes and demonstrated how they were used following hurricanes to make maps of the damage that was caused. He talked about the advantages of a drone being able to go where a plane can’t go: above a hurricane, a wildfire, or a burning building. In addition to mapping the severity of the disaster, drones can deliver much-needed supplies, even portable cell-phone towers. Drones are being used
DATE:
TEAM MEMBERS: Jan Mokros Dan Leclair
resource evaluation Public Programs
The National Federation of the Blind (NFB), in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota (SMM), has developed the Spatial Ability and Blind Engineering Research (SABER) project to assess and improve the spatial ability of blind teens in order to broaden their participation in STEM fields. The goals of the project include: Contribute to the knowledge base of effective practices regarding informal STEM education for the blind, particularly relating to the development of spatial reasoning abilities. Educate families, blind
DATE:
TEAM MEMBERS: Joe E Heimlich Gary Timko
resource evaluation Public Programs
Program evaluators from the Education Development Center (EDC) used a mixed-methods, quasi-experimental design to evaluate the impact on girls’ awareness and interest in science, technology, engineering, and mathematics (STEM). After the final year of the project, EDC delivered a summative report to Techbridge Girls (TBG), which was based on data collected during the five-year grant period, with a particular focus on the final year that grant funds supported programming (2017-18). Data included pre- and post-surveys with TBG participants and comparison students, participant focus groups, and
DATE:
TEAM MEMBERS: Ginger Fitzwater
resource evaluation Media and Technology
YR Media (formerly Youth Radio) engages young people in digital media production that combines journalism, design, data, and coding. With support from the National Science Foundation (NSF), YR Media collaborated with the Massachusetts Institute of Technology’s App Inventor to launch WAVES — A STEM-Powered Youth News Network for the Nation. This three-year initiative expanded YR Media’s model of informal STEM education through the launch of a national platform that utilizes STEM-powered tools to create and distribute news stories, mobile apps, and digital interactives. Rockman et al, an
DATE:
resource research Public Programs
We examined the conversational reflections of 248 families with 6–11‐year‐old children shortly after they visited a tinkering exhibit. Our aim was to understand the conditions of tinkering and conversational reflection that can enhance STEM learning opportunities for young children. We discuss implications for the design of tinkering and reflection activities that can both reveal and advance STEM learning.
DATE:
TEAM MEMBERS: Lauren Pagano Catherine Haden David Uttal Tsivia Cohen
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will develop and research, as a feasibility study, a series of art-inclusive, pop-up Science, Art, Technology, Engineering, and Mathematics (STEAM) makerspaces in a high-poverty, primarily rural county in Oklahoma. A makerspace is a collaborative work space inside a library, school or other community space for making, learning, exploring and sharing that uses high tech to low tech tools. The makerspaces will be temporary workshops that are developed through a community planning process that assesses the needs and interests of citizen stakeholders. Scientists, artists and other experts will work together with the community to design a series of thematic pop-up makerspace sessions. The project builds a collaborative infrastructure and capacity for small and rural communities by bringing together resource providers and experts to identify and design science-oriented challenges. Long-term benefits for participants include sustained focus on new approaches for civic engagement through STEAM-driven making which could foster new role identities pertaining to science and art. The project deliverables include: (1) a theoretically informed model to build a community's capacity to collaborate toward fostering civic engagement through science-oriented pop-up makerspaces, (2) Pop-Up STEAM Studio makerspaces, (3) training for pop-up facilitators, and (4) visual documentation panels and web-based digital stories to communicate progress and process.

Project research will enhance knowledge-building of the process of developing a science-oriented community challenge that embraces STEAM and making. A key contribution of the proposed project will be the generation of insights into how community members establish consensus around the joint goal of designing, documenting, and facilitating integrated art and science making activities to address and communicate the challenge. Research will focus on the roles participants take when engaging in the making process through an identity-based model of motivated action. Analysis of advisory board meeting artifacts and focus group data will allow the researchers to identify processes of negotiation and consensus building at the collective level and in relation to each issue to which the group attends. Emergent themes (such as negotiation, shared learning, idea or project revisions, diverse perspectives coming to consensus, etc.) will be examined across individual and group units of analysis, from all data sources, and through the congruent theoretical lenses of role identity theory and negotiated learning pedagogy. The research outcomes should inform efforts to build infrastructure and capacity of community resources by providing a model for developing collaborative pop-up makerspaces.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sheri Vasinda Joanna Garner Stephanie Hathcock Rebecca Brienen
resource project Informal/Formal Connections
Cities are facing new demands as their urban populations rapidly grow. Smart City initiatives are being developed to address issues of mobility, infrastructure, security, and safety, while enhancing the quality of life of citizens. One-size-fits-all solutions are not viable. Instead, the diversity of a city's residents, including life experiences, cultural backgrounds, needs, and behaviors, must be taken into account to achieve transformative, citizen-centered solutions. Engineers, scientists, policy makers, entrepreneurs, and thought leaders must be prepared to tackle future Smart City challenges, and address knowledge barriers in understanding the needs of citizens across age, occupation, financial standing, disability, and technology savviness. This National Science Foundation Research Traineeship (NRT) award to the Arizona State University addresses this need by training the next generation of MS and PhD students for careers in Smart Cities-related fields. The project anticipates training thirty-eight (38) MS and PhD students, including twenty-four (24) funded trainees, from the following degree programs: Human and Social Dimensions of Science and Technology; Public Affairs; Computer Science; Civil, Environmental, and Sustainable Engineering; Mechanical & Aerospace Engineering; and Applied Engineering Programs. In addition to trainees, it is envisioned that over 300 other MS and PhD students in STEM disciplines will participate in opportunities made available through this traineeship. The knowledge and technologies developed from this project will contribute toward improving the quality of life for all of society through interdisciplinary, citizen-centered Smart City solutions.

An integrated education-research-practice model focused on the technological, societal, and environmental research aspects of citizen-centered solutions for Smart Cities will be employed to instill trainees with transdisciplinary skills and knowledge through cross-disciplinary courses; experience with leading collaborative, use-inspired research projects; applied learning through internships with partners and teaching opportunities; research experiences through service learning and leadership; and entrepreneurial education. Trainees will pursue research thrusts in Citizen-Centered Design; Smart City Infrastructure and Dynamics; and Socio-Environmental Practices and Policies. These thrusts are embedded in integrative priority application areas of Transportation and Accessibility; Safety, Security, and Risk Reduction; and Engagement and Education. Research efforts will significantly advance data-enabled citizen engagement; urban informatics; Internet-of-Things technologies; inclusion and accessibility; urban infrastructure; transportation systems; cybersecurity; swarm robotics; urban sustainability; quality of life and equity for citizens; hazards management and risk reduction; and societal concerns and ethics of emerging Smart City technologies. Focused efforts will be made to recruit underrepresented minorities, women, and individuals with disabilities, in order to tap underutilized talent, equip them to address the needs of their communities, and increase involvement of these groups in Smart Cities-related fields.

The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Ram Pendyala Cynthia Selin Ann McKenna Troy McDaniel Gail-Joon Ahn Sethuraman Panchanathan