Skip to main content

Community Repository Search Results

resource research Public Programs
Science and technology have become tools to legitimize messages that affect the world in terms of society, politics and economy. This paper presents part of the results of a study that analyzed the symbolic construction of the future in the scientific-technological discourse at EPCOT theme park in Orlando, Florida. The sociohistorical conditions and narrative strategies are analyzed based on the theoretical and methodological approach by John B. Thompson. The results highlighted that the construction of the notion of progress is strongly influenced by the commercial and political interests of
DATE:
TEAM MEMBERS: Daniela Martin
resource project Exhibitions
Planning for a permanent exhibition examining the role of horse-drawn vehicles in American life in the 19th and early 20th centuries.

A World Before Cars represents the latest phase of a major redesign of the LIM’s carriage museum, which contains one of the largest and finest holdings of horse-drawn vehicles and related transportation artifacts in the country. Utilizing the expertise of skilled consultants and the highly-regarded H. Lee Skolnick Architecture and Design Partnership, the LIM will plan an interpretive gallery composed of hands-on activity areas that explore the experiences of carriage riding/driving, the integral role of horses in 19th-century America, and the ways in which carriage design innovations informed and influenced automobile design. From a ride simulation exercise to interactive computer kiosks and a comparative display of carriage and automobile parts, this new gallery will be designed to engage a variety of different visitor age and experience levels, providing an immersive entry into the world of carriages, and the unexpected ways in which they connect to our modern lives.
DATE: -
TEAM MEMBERS: Joshua Ruff
resource evaluation Exhibitions
This front-end evaluation study is part of Designing Our Tomorrow: Mobilizing the Next Generation of Engineers, a five-year project (2018–2023) led by the Oregon Museum of Science and Industry (OMSI) with the support of the National Science Foundation (NSF, DRL-1811617) and project partners: Adelante Mujeres, the Biomimicry Institute, and the Fleet Science Center. The Designing Our Tomorrow (DOT) project seeks to promote and strengthen family engagement and engineering learning via compelling exhibit-based design challenges, presented through the lens of sustainable design exemplified by
DATE:
resource research Exhibitions
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS: Ibrahim Yeter Anastasia Marie Rynearson Hoda Ehsan Annwesa Dasgupta Barbara Fagundes Muhsin Meneske Monica Cardella
resource research Exhibitions
Computational Thinking (CT) is an often overlooked, but important, aspect of engineering thinking. This connection can be seen in Wing’s definition of CT, which includes a combination of mathematical and engineering thinking required to solve problems. While previous studies have shown that children are capable of engaging in multiple CT competencies, research has yet to explore the role that parents play in promoting these competencies in their children. In this study, we are taking a unique approach by investigating the role that a homeschool mother played in her child’s engagement in CT
DATE:
TEAM MEMBERS: Hoda Ehsan Abeera Rehmat Hayaam Osman Carson Ohland Ibrahim Yeter Monica Cardella
resource research Exhibitions
Given the growth of technology in the 21st century and the growing demands for computer science skills, computational thinking has been increasingly included in K-12 STEM (Science, Technology, Engineering and Mathematics) education. Computational thinking (CT) is relevant to integrated STEM and has many common practices with other STEM disciplines. Previous studies have shown synergies between CT and engineering learning. In addition, many researchers believe that the more children are exposed to CT learning experiences, the stronger their programming abilities will be. As programming is a
DATE:
TEAM MEMBERS: Hoda Ehsan Tikyna Dandridge Ibrahim Yeter Monica Cardella
resource research Exhibitions
Informal learning environments such as science centers and museums are instrumental in the promotion of science, technology, engineering, and mathematics (STEM) education. These settings provide children with the chance to engage in self-directed activities that can create a of lifelong interest and persistence in STEM. On the other hand, the presence of parents in these settings allows children the opportunity to work together and engage in conversations that can boost understanding and enhance learning of STEM topics. To date, a considerable amount of research has focused on adult-child
DATE:
TEAM MEMBERS: Hoda Ehsan Carson Ohland Monica Cardella
resource evaluation Exhibitions
The Miami Children’s Museum (MCM) contracted RK&A to conduct a summative evaluation of the Construction Zone exhibition, which was funded in part by IMLS. The evaluation focused on understanding the overall experience for walk-in visitors to the exhibition. It also explored visitor experiences with three specific exhibits with attention to problem-solving, experimentation with building materials, and collaboration. How did we approach this study? RK&A used two methodologies to evaluate the exhibition: interviews and focused observations. RK&A conducted 51 open-ended interviews with a
DATE:
TEAM MEMBERS: Katie Chandler
resource project Exhibitions
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.

The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
DATE: -
TEAM MEMBERS: Tamara Moore Monica Cardella Senay Purzer Sean Brophy Morgan Hynes Tamara Moore Hoda Ehsan
resource project Public Programs
Informal learning institutions, such as science centers and museums, are well-positioned to broaden participation in engineering pathways by providing children from underrepresented groups with motivational, self-directed engineering design experiences. Though many informal learning institutions offer opportunities for young visitors to engage in engineering activities, little is known about the specific features of these activities that support children's motivation in engineering design processes such as problem scoping, testing, and iteration. This project will address this gap and advance foundational knowledge by identifying features of engineering design activities, as implemented within an informal setting, which support underrepresented children's engineering motivation and persistence in engineering tasks. Researchers at New York Hall of Science (NYSCI) will observe children interacting with families and museum educators as they engage in different engineering design activities in NYSCI's Design Lab, an exhibition space devoted to hands-on exploration of engineering design. They will also survey and interview the children and their caregivers about these experiences. Analyses of these data sources will result in a description of features of design activities foster motivation and task persistence in engineering design. Findings will be disseminated nationally to other informal learning institutions, which in turn can use the knowledge generated from this project to create motivational, research-based, field-tested engineering design experiences for young visitors, especially for children from underrepresented groups. The experiences may encourage children to further pursue engineering pathways, resulting in a diversified engineering workforce with the potential to drive and sustain national innovation and global technological leadership.

This project uses the framework of goal orientation, defined as learners' self-reflection of why and how they engage in tasks, to understand whether, how, and why underrepresented 7-12-year-olds engage in engineering design activities in an informal learning institution. Though previous research has suggested that goal orientation is strongly, positively related to learning and motivation in formal settings such as schools, research in informal settings has not robustly accounted for the role of goal orientation in participants' engagement with learning tasks in these unique learning environments. To better understand how children's goal orientations contribute to their motivation in engineering in informal learning institutions, researchers will answer the following research questions: (1) What are underrepresented children's goals and goal orientations while participating in engineering design activities in an informal setting? (2) What contextual factors--including facilitation strategies, materials, task relevance, and social interactions with family members--may support or discourage the adoption of different goal orientations? (3) How do goal orientations relate to children's learning experience in the engineering design activities and the likelihood that they will test and iterate their solutions? These questions will be answered through a mixed-method research study conducted with approximately 200 families, with children aged 7-12, recruited from underrepresented groups. Semi-structured clinical interviews, conducted with 20% of the children and their caregivers, as well as observations and surveys gathered from all families, will provide information on the children's goal orientation and engagement as they relate to specific engineering design activities. Qualitative content analyses and multilevel structural equation modeling will result in findings that will be disseminated widely to other institutions of informal learning. Ultimately, this project will generate new empirical knowledge regarding the features of engineering design activities in informal learning environments that increase engineering engagement and motivation among underrepresented children, thereby broadening participation in engineering pathways.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: ChangChia James Liu Dorothy Bennett Katherine Culp
resource research Public Programs
We examined the conversational reflections of 248 families with 6–11‐year‐old children shortly after they visited a tinkering exhibit. Our aim was to understand the conditions of tinkering and conversational reflection that can enhance STEM learning opportunities for young children. We discuss implications for the design of tinkering and reflection activities that can both reveal and advance STEM learning.
DATE:
TEAM MEMBERS: Lauren Pagano Catherine Haden David Uttal Tsivia Cohen
resource project Exhibitions
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.

The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -