Skip to main content

Community Repository Search Results

resource research Exhibitions
With the suite of environmental challenges faced by today’s society growing ever more imminent, the potential role of science and natural history museums as social institutions to promote environmental stewardship is being realized. A recent collaborative effort between the EcoTarium in Worcester, MA and six other institutions across the country, the NSF funded City Science exhibit serves to introduce the public to new research on human-ecology interactions in urban settings. The project also supports the inclusion of Public Participation in Science Research (PPSR) elements in museum exhibits
DATE:
TEAM MEMBERS: Marissa Gallant Shana Hawrylchak Jacqueline DeLisa
resource evaluation Media and Technology
Funded by the National Science Foundation, the Science of Sharing project (SoS) was a collaboration between the Exploratorium, the Museum of Life and Science, Dialogue Social Enterprise and The Heroic Imagination Project. SoS included two major components for members of the public to engage with: a permanent collection of interactive, multi-user exhibits at the Exploratorium, and a series of social-media based activities called Experimonths. SoS exhibits and Experimonths were designed to allow visitors to experiment with cooperation, trust, and social dilemmas, connect those experiences to
DATE:
TEAM MEMBERS: Wendy Meluch
resource project Professional Development, Conferences, and Networks
The National Writing Project (NWP) is collaborating with the Association of Science-Technology Centers (ASTC) on a four-year, full-scale development project that is designed to integrate science and literacy. Partnerships will be formed between NWP sites and ASTC member science centers and museums to develop, test, and refine innovative programs for educators and youth, resulting in the creation of a unique learning network. The project highlights the critical need for the integration of science and literacy and builds on recommendations in the Common Core State Standards and the National Research Council's publication, "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The content focus includes current topics in science and technology such as environmental science, sustainability, synthetic biology, geoengineering, and other subjects which align with science center research and exhibits. The project design is supported by a framework that incorporates a constructivist/inquiry-based approach that capitalizes on the synergy between rigorous science learning and robust literacy practices. Project deliverables include a set of 10 local partnership sites, professional development for network members, a project website, and an evaluation report highlighting lessons learned. Partnership sites will be selected based on interest, proximity, history, and expertise. Two geographically and demographically diverse cohorts, consisting of five partnerships each will be identified in Years 2 and 3. Each set of partners will be charged with creating a comprehensive two-year plan for science literacy activities and products to be implemented at local sites. It is anticipated that the pilot programs may result in the creation of new programs that merge science and writing, integrate writing into existing museum science programs, or integrate science activities into existing NWP programs. Interest-driven youth projects such as citizen science and science journalism activities are examples of programmatic approaches that may be adopted. The partners will convene periodically for planning and professional development focused on the integration of science and literacy for public and professional audiences, provided in part by national practitioners and research experts. A network Design Team that includes leadership representatives from NWP, ASTC, and the project evaluator, Inverness Research, Inc., will oversee project efforts in conjunction with a national advisory board, while a Partnership Coordinator will provide support for the local sites. Inverness Research will conduct a multi-level evaluation to address the following questions: -What is the nature and quality of the local partner arrangements, and the larger network as a whole? -What is the nature and quality of the local science literacy programs that local partners initiate, and how do they engage local participants, and develop their sense of inquiry and communication skills? First, a Designed-Based Implementation Research approach will be used for the developmental evaluation to assess the implementation process. Next, the documentation and portrayal phase will assess the benefits to youth, educators, institutions, and the field using surveys, interviews, observations of educators, and reviews of science communication efforts created by youth. Finally, the summative evaluation includes a comprehensive portfolio of evidence to document the audience impacts and an independent assessment of the project model by an Evaluation Review Board. This project will result in the creation of a robust learning community while contributing knowledge and lessons learned to the field about networks and innovative partnerships. It is anticipated that formal and informal educators will gain increased knowledge about science and literacy programs and develop skills to provide effective programs, while youth will demonstrate increased understanding of key science concepts and the ability to communicate science. Programs created by the local partnerships will serve approximately 650 educators (450 informal educators and 200 K-12 teachers) and 500 youth ages 9-18. Plans for dissemination, expansion, and sustainability will be undertaken by the sub-networks of the collaborating national organizations drawing on the 350 ASTC member institutions and nearly 200 NWP sites at colleges and universities.
DATE: -
resource project Public Programs
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
DATE: -
TEAM MEMBERS: Cathy Ferree
resource project Professional Development, Conferences, and Networks
Expanding on the encouraging outcomes of an NSF-funded conference, this three-year project led by the National Center for Science and Civic Engagement at Harrisburg University of Science and Technology, in collaboration with the Koshland Science Museum of the National Academy of Sciences, will explore and evaluate ways to support new collaborations between professionals in institutions of higher education and informal STEM education around areas of common interest. The primary goal is to develop the educational infrastructure to grow and efficiently sustain multiple cross-organizational partnership activities at the intersection of learning about science, society and civic engagement around such possible topics as energy, environment, genetics, earth resources, computers and ethics, nanotechnology, etc. The initiative is: 1) creating a joint organizing "secretariat" to provide communications and support through low-cost shared services for at least six partnerships around the country; 2) providing partnership support and technical assistance to seed the six national partnerships, and 3) sharing evaluation and analysis services across all the partnerships. The outcomes of the work pertain to improvements in professional knowledge and practice in higher education and informal science education, as well as the improvement of learning by undergraduates and by the general public.
DATE: -
TEAM MEMBERS: William Burns Hailey Chenevert
resource project Public Programs
The National Girls Collaborative Project (NGCP) seeks to maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in science, technology, engineering, and mathematics (STEM). Funded primarily by the National Science Foundation, the NGCP is a robust national network of more than 3,000 girl-serving STEM organizations. Currently, 31 Collaboratives, serving 40 states, facilitate collaboration between more than 12,800 organizations who serve more than 7.7 million girls and 4.4 million boys. The NGCP occupies a unique role in the STEM community because it facilitates collaboration with all stakeholders who benefit from increasing diversity and engagement of women in STEM. These stakeholders form Regional Collaboratives, who are connected to local girl-serving STEM programs. Regional Collaboratives are led by leadership teams and advisory boards with representatives from K-12 education, higher education, community-based organizations, professional organizations, and industry. NGCP strengthens the capacity of girl-serving STEM projects by facilitating collaboration among programs and organizations and by sharing promising practice research, program models, and products through webinars, collaboration training, and institutes. This is accomplished through a tested comprehensive program of change that uses collaboration to expand and strengthen STEM-related opportunities for girls and women. In each replication state, the NGCP model creates a network of professionals, researchers, and practitioners, facilitating collaboration within this network, and delivering high-quality research-based professional development. Participating programs can also receive mini-grant funding to develop collaborative STEM-focused projects. To date, over 27,000 participants have been served in 241 mini-grant projects, and over 17,000 practitioners have been served through in-person events and webinars. The NGCP’s collaborative model changes the way practitioners and educators work to advance girls’ participation in STEM. It facilitates the development of practitioners in their knowledge of good gender equitable educational practices, awareness of the role of K-12 education in STEM workforce development, and mutual support of peers locally and across the United States.
DATE: -
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Public Programs
Native Universe: Indigenous Voice in Museums, a collaboration between the Indigenous Education Institute, University of California-Berkeley, and the University of Hawaii at Hilo, builds on the successful NSF-funded Cosmic Serpent collaborative (DRL 07-14631/DRL 07-14629). The Cosmic Serpent professional development project explores commonalities between native and western science, enabling participants to use STEM as an entry point for museum programs and exhibits. Native Universe endeavors to move to the next level by creating a professional development program which fosters systemic institutional change through the infusion of indigenous voice in programs and exhibits focusing on environmental change. Topics to be explored include species distribution, environmental vulnerability, adaptation of human systems, and science and policy issues on the local, regional, and global levels. This project is designed to assess how cultural background and exposure to indigenous knowledge systems integrated with western science influence these perspectives; develop sustainable institutional competence in presenting multiple perspectives on environmental change; and create models for inclusion while building an enduring community of practice. The project design relies upon a conceptual framework grounded in the literature on indigenous voice and traditional ecological knowledge, as well as current models for institutional change. Front-end, summative, and process evaluation will address questions related to how science museums facilitate engagement and inclusion of indigenous voice in the presentation of environmental change content, stages of readiness, and the emergence of models for this process. Methods for data collection include reflective logs, pre-post questionnaires, and semi-structured interviews at multiple points to measure the degree and nature of change within museums, as well as how change was initiated, supported, and sustained by staff. Project deliverables include three museum case studies developed during 9-month residencies, public experiences for visitors, a culminating virtual conference, and a dynamic community of practice among museums committed to indigenous voice in informal science education. The museum residencies will take place at the Oregon Museum of Science and Industry, the Arizona-Sonora Desert Museum, and the Museum of the North in Alaska. Intensive case studies will be conducted at each site following the Diné Strategic Planning Process (consisting of initiation, growth, implementation, and renewal) and featuring the Ìmiloa Astronomy Institute as a model for institutional change. Exhibits and programs have been identified at each site that will be developed or expanded to integrate environmental change content and native perspectives. Dissemination of the project findings will be accomplished through publications, conference presentations, videos, webinars (four per year), and the virtual conference. It is anticipated that this project will impact over 1.2 million visitors at the collaborating institutions, in addition to the professional audience of museum staff. Native Universe may provide valuable interpretive tools for the field to understand and address the challenges associated with integrating cultural perspectives and science content. The museum case studies will contribute knowledge about the cultural process of science learning, and may transform the way science is presented in museums by leveraging indigenous voice to enhance public awareness and understanding of environmental change from a culturally-grounded perspective. The overall benefit is increased participation of indigenous individuals in STEM and increased public science literacy in the area of environmental change.
DATE: -
TEAM MEMBERS: Nancy Maryboy David Begay Laura Peticolas Leslie Kimura
resource project Exhibitions
This project will engage underserved Native and non-native youth and adults in environmental science content and awareness through innovative exhibitions and hands-on activities. Traditional ecological knowledge (TEK) and western science will be communicated and promoted within culturally relevant contexts as valuable, complementary ways of knowing, understanding, and caring for the world. The Oregon Museum of Science and Industry (OMSI), the lead institution, and its partner organizations, The Indigenous Education Institute (IEI), The National Museum of the American Indian (NMAI), the Tramastklikt Cultural Institute, the Confederated Tribes of the Umatilla Indian Reservation, the Hibub Cultural Center and Natural History Preserve (Tulalip Tribes) will work collaboratively to develop and deliver all aspects of the project. An estimated 1.5 million Native American and non-Native American youth and adults are expected to be engaged in the project\'s exhibits, website, and activity kits over the five year duration of the project. Native American and non-Native American youth (ages 11-14) and their families from the Portland area and visitors to national science centers, tribal museums, and members of Native American organizations and service providers will be targeted for participation in Generations of Knowledge activities. In addition, the Professional Collaborative component will bring professionals from the partnering organizations to share resources, professional opportunities, and document their collaborative process. OMSI, project partners, Native scientists, tribal museum partner, exhibit developers, advisors, and members of various Native American communities will work collaboratively to develop four integrated deliverables. Each deliverable will be interconnected and designed to accommodate a variety of venues and audiences. Project deliverables include: (a) a 2,000 sq ft traveling exhibition, (b) a small traveling graphic panel exhibition, (c) an online virtual exhibition, (d) an activity kit for Native youth in informal and formal settings, and (e) opportunities and resources for reciprocal collaboration between ISE and Native American partners through a professional collaborative initiative. IEI and advisors from RMC Research and Native Pathways will conduct the external evaluation using a mixed method, community-based participatory research (CBPR) approach. Formative and summative evaluative data will be used to monitor, assess, and inform the project and the extent to which project goals have been met and the intended impacts achieved. The anticipated project outcomes include (but not limited to): (a) an awareness and understanding of the interconnectedness of TEK and western science, (b) a recognition of the relevancy and value of TEK and western science for understanding and caring for the natural world, (c) intergenerational learning and discussions about related TEK and western science issues, and (d) an increased capacity, supported by evidence, among the project team and partners to facilitate reciprocal collaborative efforts. This project builds on a long history of successful NSF/DRL supported work led by OMSI and IEI. It also extends existing traditional ecological knowledge focused work through a culturally contextualized hands-on traveling and virtual exhibitions, a rigorous professional development component, highly visible national partners (e.g., NMAI), and a national reach to over one million Native American and non-Native American youth and adults over a five year period. The project\'s research and evaluation findings will add to the knowledge base on strategies that can be employed to communicate and promote TEK and western science as complementary, valuable was of understanding and caring for the natural world.
DATE: -
TEAM MEMBERS: Victoria Coats Lori Erickson Nancy Maryboy David Begay Jill Stein
resource project Professional Development, Conferences, and Networks
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.
DATE: -
TEAM MEMBERS: Sandra Simpkins
resource project Public Programs
Boston's Museum of Science (MOS), with Harvard as its university research partner, is extending, disseminating, and further evaluating their NSF-funded (DRL-0714706) Living Laboratory model of informal cognitive science education. In this model, early-childhood researchers have both conducted research in the MOS Discovery Center for young children and interacted with visitors during the museum's operating hours about what their research is finding about child development and cognition. Several methods of interacting with adult visitors were designed and evaluated, including the use of "research toys" as exhibits and interpretation materials. Summative evaluation of the original work indicated positive outcomes on all targeted audiences - adults with young children, museum educators, and researchers. The project is now broadening the implementation of the model by establishing three additional museum Hub Sites, each with university partners - Maryland Science Center (with Johns Hopkins), Madison Children's Museum (with University of Wisconsin, Madison), and Oregon Museum of Science and Industry (with Lewis & Clark College). The audiences continue to include researchers (including graduate and undergraduate students); museum educators; and adults with children visiting the museums. Deliverables consist of: (1) establishment of the Living Lab model at the Hub sites and continued improvement of the MOS site, (2) a virtual Hub portal for the four sites and others around the country, (3) tool-kit resources for both museums and scientists, and (4) professional symposia at all sites. Intended outcomes are: (1) improve museum educators' and museum visiting adults' understanding of cognitive/developmental psychology and research and its application to raising their children, (2) improve researchers' ability to communicate with the public and to conduct their research at the museums, and (3) increase interest in, knowledge about, and application of this model throughout the museum community and grow a network of such collaborations.
DATE: -
resource project Public Programs
The purpose of this three-year collaborative design research project is to examine the role of culture in the development of knowledge and reasoning about the natural world and the subsequent sense-making of and participation in natural resource management. The PIs propose to examine the ways in which culture impacts observational habits, explanation constructing, uses and forms of evidence, and orientations towards socio-scientific challenges such as natural resource management. Collaborating on this project are researchers from the American Indian Center of Chicago, Northwestern University, and the Menominee Indian Tribe of Wisconsin. The audience for this study includes the academic informal science education community and indigenous science educators. This project also offers extensive cross-cultural, cross-disciplinary research opportunities for pre- and post-doctoral research trainees. The project will employ a mixed methods approach and proposes evaluation through an advisory board and community input. A community assessment team is proposed to review activities, obtain feedback from the larger community, and identify challenges to the effective implementation of the program. The project is comprised of two main panels of studies: the first consisting of a series of investigations of learning in everyday activities and the second consisting of two community design experiments that engage two Native American communities and two non-Native communities, one rural and one urban for both communities, in a culturally based citizen science (CBCS) project focused on ecosystem disruption (e.g. invasive species; climate change) and natural resource management. The CBCS project will engage participants in question formation, data collection, data analysis, forming policy recommendations, and citizen action around the findings. This project will develop a citizen science model that effectively engages diverse communities towards productive science learning, helpful scientific data collection, and citizen engagement in community planning and local policy decisions. The researchers believe that fundamental advances in STEM teaching and learning are needed across the broad landscape of learning environments and that the success of such advances may pivot on innovations and discoveries made in informal environments. Insights obtained from prior research on learning in indigenous cultures, especially in biological and environmental sciences, combined with the anticipated results from this study could lead to a deeper understanding of cross-cultural similarities and differences in science learning.
DATE: -
TEAM MEMBERS: Karen Washinawatok Megan Bang Douglas Medin University of Washington