Skip to main content

Community Repository Search Results

resource project Public Programs
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
DATE: -
resource project Media and Technology
This Science Learning+ Planning Project will develop a prototype assessment tool (based on a mobile technology platform) to map STEM learning experiences across different learning ecologies (e.g. science centers, mass media, home environment) and to develop research questions and designs for a Phase 2 Science Learning+ proposal. The tool will focus on the impact of the learning ecologies on knowledge, interest, identity and reasoning rather than emphasize learning in a specific content area. The proposing team will develop and conduct a small scale usability study during the planning period, which will inform what is proposed in the Phase 2 research. A key focus of the planning period will be to identify and develop the theoretical constructs (i.e., outcomes) to be measured by the prototype App. As a starting point, the project will start with four of the six strands identified in Learning Science in Informal Environments (National Research Council, Bell et al., 2009): (1) interest triggered by a STEM experience; (2) understanding scientific knowledge; (3) engaging in scientific reasoning; and (4) identifying with the scientific enterprise. Discussion among the project partners during the planning process will revolve around how these strands should be measured in the Phase 2 research across ecologies. The measurement tool will assess the goal(s) that people set as they engage in STEM learning within each ecology and will measure the individuals' duration and level of engagement. The project will strive to utilize measures that: (1) are nonobtrusive; (2) are embedded in STEM experiences; (3) can be used across ecologies; (4) can be scaled for other ecologies than the ones examined in Phase 2 research; and (5) will be easy to use by researchers and practitioners.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Great Lakes Science Center University of Limerick IdeaStream (UK) Irish Independent newspaper
resource project Media and Technology
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE: -
TEAM MEMBERS: James Diamond New York City Hive Learning Network MOUSE DigitalMe Katherine McMillan
resource project Public Programs
Based on the number of visitors annually, zoos and aquariums are among the most popular venues for informal STEM learning in the United States and the United Kingdom. Most research into the impacts of informal STEM learning experiences at zoos and aquariums has focused on short-term changes in knowledge, attitudes and behaviors. This Science Learning+ project will identify the opportunities for and barriers to researching the long-term impacts of informal STEM learning experiences at zoos and aquariums. The project will address the following overarching research question: What are and how do we measure the long-term impacts of an informal STEM learning experience at a zoo and aquarium? While previous research has documented notable results, understanding the long-term impacts of zoo and aquarium learning experiences will provide a deeper and more nuanced understanding of the impact of these programs on STEM knowledge, skills and application. This study will use a participatory process to identify: (1) the range of potential long-term impacts of informal science learning experiences at zoos and aquariums; (2) particular activities that foster these impacts; and (3) opportunities for and barriers to measuring those impacts. First, an in-depth literature review will document previous research efforts to date within the zoo and aquarium community. Second, a series of consultative workshops (both in-person and online) will gather ideas and input from practitioners, researchers, and other stakeholders in zoo and aquarium education. The consultative workshops will focus on two questions in particular: (1) What are the different types and characteristics of informal science learning experiences that take place at zoos and aquariums? and (2) What are the long-term impacts zoos and aquariums are aiming to have on visitors in relation to knowledge, attitudes, skills and behaviors/actions? Finally, visitor surveys at zoos and aquariums in the US and UK will be conducted to gather input on what visitors believe are the long-term impacts of an informal STEM learning opportunity at a zoo or aquarium. The data gathered through all of these activities will inform the design of a five-year, mixed-methods study to investigate long-term impacts and associated indicators of an informal STEM learning experience at a zoo or aquarium. One of the aims of the five-year study will be to test instruments that could eventually be used by the global zoo and aquarium community to measure the long-term impacts of informal STEM learning programs. Designing tools to better understand the long-term impacts of informal STEM learning at zoos and aquariums will contribute to our ability to measure STEM learning outcomes. Additional benefits include improved science literacy and STEM skills amongst visitors over time and an understanding of how education programs contribute to wildlife conservation worldwide.
DATE: -
TEAM MEMBERS: Brian Johnson Stanford University Lancaster University Sarah Thomas Nicole Ardoin Murray Saunders
resource project Public Programs
This Science Learning+ project will develop research-and-practice activities to explore how an integrated art, STEM, and society (what we refer to as STEAM) approach can expand science engagement and learning of youth aged 15-19, from low-income and non-dominant cultural communities. The project will review current knowledge, practice, and trends related to underrepresented youth, STEAM, and science engagement. The review will be used to develop: (1) A cross-setting research framework for investigating the relationship between informal STEAM learning experiences and young people's developing engagement with science. (2) Design principles for out-of-school STEAM programs that have proven effective in cultivating youth engagement with science and making relevant cross-setting connections. (3) Practitioner-friendly program evaluation tools that integrate findings from current research and practice related to cross-setting science learning of young adults especially non-dominant youth as it relates to STEAM learning experiences.
DATE:
resource project Public Programs
President Obama announced in April 2013 that the Corporation for National and Community Service (CNCS) would launch a STEM AmeriCorps initiative to build student interest in STEM. A RFA is currently being prepared to be released in the late fall of 2013. This project will engage in quick response research to identify an evaluation and research agenda that can begin to inform the program launch. Thus, the timeframe for informing the initial stages of STEM AmeriCorps is relatively short, and the creation of an evaluation and research agenda is very timely. The products from the RAPID proposal are: (1) a review of the evaluation and research literature on the use of volunteers and/or mentors to build students' interest in STEM; (2) to convene a workshop to identify evaluation and research priorities to guide the initiative; and (3) a summary evaluation agenda that identifies promising directions along with the strength of evidence around key issues.
DATE: -
TEAM MEMBERS: Beth Gamse Alina Martinez
resource project Media and Technology
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
DATE: -
TEAM MEMBERS: Barietta Scott
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project, "STEM Learning in Libraries: A National Conference on Needs, Opportunities, and Future Directions," brings together libraries, informal educators and STEM education and research organizations to discuss the role of libraries in STEM out-of-school time (OST) education, share existing programs, define library needs, and develop a research and evaluation agenda. To date, there has not been systematic exploration of the ways that STEM programming occurs in libraries nor of their effectiveness when they do happen. This will be the first conference of its kind and stands to have a high degree of visibility and the potential for broad impact. Principal Investigator Paul Dusenbery, Director of the National Center for Interactive Learning (NCIL) and Executive Director of Space Science Institute, will lead an experienced project team that includes Co-PI Keliann LaConte, Lunar Planetary Institute; Susan Brandehoff, Public Programs Office, American Library Association; and Anne Holland, NCIL. The conference sessions will be organized around four strands: (1) showcasing successful STEM programs and reviewing research and evaluation results on informal STEM learning in public libraries; (2) examining the current needs, barriers, and opportunities of public libraries; (3) elucidating the possible future roles of public libraries in the 21st Century; and (4) identifying promising practices and strategies. Beginning with core members comprised of the project team and organizing committees, the project will create a Leadership Forum for library directors, library science educators, and policy makers, as well as STEM professionals and educators. Conference results will be disseminated through a wide variety of organizational websites: NCIL, ALA, LPI, the conference website, the STAR_Net online community, and CAISE. In 2010, there were nearly 1.6 billion visits to 17,000 public libraries. Library audiences are true reflections of the nation's population - they serve all races, ages, economic backgrounds, and regions of the country. The STEM Learning in Libraries conference will give public libraries, STEM organizations, informal educators, and funders an opportunity to begin a dialogue with implications for profoundly impacting the attitudes of millions of Americans toward STEM topics.
DATE: -
resource project Public Programs
During middle school, many young people disengage from and consequently do not achieve in school-based STEM subjects. This phenomenon is more pronounced among young people in low-income communities than elsewhere. Many summer, out-of-school STEM programs are designed to offer young people opportunities to engage in hands-on, inquiry-based learning that promote interest and engagement in STEM. Research on the effect of these types of programs is limited, however. This research project seeks to fill this gap by identifying and studying practices that promote interest and engagement in STEM-related topics. The central goal of the summer STEM Interest and Engagement Study is to identify instructional practices associated with cultivating and sustaining young people's interest and engagement in out-of-school STEM summer learning programs for middle school youth. The project is based on a model of change developed from existing theory and empirical research on the cultivation of youths' interest and engagement in STEM. The project is a descriptive study that will apply multiple data collection and analytic methods, including the Experience Sampling Method (ESM), to determine instructional practices and the resulting interest, engagement, and perceptions of youth as they participate in STEM activities. In addition, survey data provided by program participants will allow the researchers to account for individual differences in preexisting interest and background factors, such as gender and ethnicity, and to measure changes in dispositions toward STEM. By better understanding these connections, practitioners can better understand how the design of their programs may influence the outcome of the participants' experience, including their education and career decisions.
DATE: -
TEAM MEMBERS: Deborah Moroney Neil Naftzger Lee Shumow Jennifer Schmidt
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create works. Increasingly, maker spaces and maker technologies provide extended learning opportunities for school-aged young people. In such environments participants engage in many forms of communication where individuals and groups of people are focused on different projects simultaneously. The research conducted in this project will address an important need of those engaged in the making movement: evidence leading to a better understanding of how participants in maker spaces engage with science, technology, engineering and mathematics (STEM) as they create and produce physical products of personal and social value. Specifically, this research will generate new knowledge regarding how participants: pose and solve problems; identify, organize and integrate information from different sources; integrate information of different kinds (visual, quantitative, and verbal); and share ideas, knowledge and work with others. To understand and support STEM literacies involved in making, the investigators will study a number of different informal learning sites that self-identify as maker spaces and serve different-aged participants. The project will use ethnographic and design research techniques in three cycles of qualitative research. In Cycle One, the researchers will investigate two adult-oriented maker spaces in order to generate case studies and develop theories about how more experienced adult makers use the spaces and to create case studies of adult maker spaces, and to develop methodological techniques for understanding literacy in maker spaces. In Cycle Two, the study will expand into two out-of-school time youth-oriented maker spaces, building two new case studies and initiating design-based research activities. In Cycle Three, the team will further apply their developing theories and findings, through rapid iterative design-based research, to interventions that support participants' science literacy and making practices in two maker spaces that exist in schools. Through peer-reviewed publications, briefs, conference presentations, presence on websites of local and national maker organizations, project findings will be widely shared with organizations and individuals that are engaged in broadening the base of U.S. science and mathematics professionals for an innovation economy.
DATE: -
resource project Public Programs
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
DATE: -
resource project Exhibitions
The project "Microetching of the Human Brain" endeavors to create the most comprehensive illustration of the human brain that has ever existed. Investigators will utilize reflective microetching, a process combining mathematics and optics to create an art piece that evolves based on the position of the viewer. Microetching allows the depiction of very complex brain activity at incredibly fine detail. The final piece will be a wall-sized piece of fine art experienced by a diverse population of thousands daily at the Franklin Institute in Philadelphia. Additionally, this project is an educational opportunity for undergraduate students through direct involvement in the creation of the piece. As this project spans many scientific and artistic disciplines, students will be given an opportunity to learn about fields apart from their own, to broaden their skill set, and to learn how to communicate scientific concepts effectively. This project is a collaboration between neuroscientists, engineers, physicists, and artists to address the question of whether art can be used in the dissemination of scientific understanding to new audiences in a way that gives a visceral sense of the underlying concepts. The human brain is massively complex and challenging to portray clearly. Conveying a sense of its complexity through art may inspire an interest in the brain's scientific content and inspire a new generation of neuroscientists. To produce a piece of fine art capable of sufficient detail to depict the brain at near full complexity, the piece will be executed by a technique called reflective microetching. Microetching is a high-resolution lithographic process that patterns a microtopography of periodic ridges into the surface. These ridges are engineered to reflect a point-source illumination toward a viewer when standing at a specific angle relative to the painting. Similar to darkfield microscopy, this can yield incredibly fine detail. Additionally, the angular dependence of the light adds an extra dimension that can be used to convey time, depth, or motion as the viewer walks past. The piece will feature neurons, glia, vasculature, white and gray matter, and reflectively animated circuit dynamics between areas of the brain corresponding to neural processes involved in visual self-recognition. This will infuse the piece with additional meaning, as the circuits activated within viewers' brains will be the same that are depicted in the artwork.
DATE: -
TEAM MEMBERS: Brian Edwards Gregory Dunn