Skip to main content

Community Repository Search Results

resource project Media and Technology
Purpose: The United States (U.S.) has traditionally produced the world’s top research scientists and engineers, leading to breakthrough advances in science and technology. Despite the importance of STEM careers, many U.S. students are not graduating with strong STEM knowledge, skills or interests, and the percentage of students prepared for or pursuing STEM degrees or careers is declining. Research shows that the decreased interest in STEM typically begins in the middle school years, pose significant academic and social challenges for students. This project will develop a web-based game teach 6th to 8th students key scientific inquiry skills, along with the academic mindsets and learning strategies to facilitate engagement and effective science learning.

Project Activities: The researchers will create a prototype by mapping key Next Generation Science Standards and learning goals with concepts and content, and producing a game design document. Following completion of the prototype, the researchers will finalize the server architecture, create the core code systems, concept art, and develop a prototype in order to simulate the final user experience. Iterative refinements will be conducted as needed at major production milestones until the game is fully functional. Once development is complete, the research team will assess the usability and feasibility, fidelity of implementation, and the promise of the game to improve outcomes in a pilot study. In this study, 200 students in 10 classes will participate, with 5 of the classrooms randomly assigned to use the game and 5 who will proceed as normal. All students will complete pre- and post- program surveys assessing their academic mindsets, learning strategies, and science skills.

Product: This project will develop SciSkillQuest, a web-based multiplayer game intended to teach middle school students scientific inquiry skills and to foster academic growth mindsets in science. Students will pursue quests, employing inquiry skills to navigate and succeed in the game, including Questioning, Modeling, Investigating, Analyzing, Computing, Explaining, Arguing, and Informing. The game will include different paths to a solution, role playing elements, immersive narratives, challenge-based progressions, and peer collaboration to engage players. The growth mindset message — that ability and skill are developed through effort and learning — will be introduced and reinforced through feedback by embedded in-game characters. The games will be supplemental to the curriculum but will also be designed to be integrated within instructional practice. The game will be available for mobile devices as well as web browsers.
DATE: -
TEAM MEMBERS: Lisa Sorich Blackwell
resource project Media and Technology
The proposed project, which will build upon a successful NSF EAGER grant, will help arctic researchers explain the significance of their research widely to the general public which, in today's technologically connected world means not only in the U.S., but worldwide- and to reflect the diversity of the scientific enterprise Alaska. As proposed, the current Frontier Scientist's schedule of science reporting will be enhanced by a broadcast TV series titled Frontier Scientists to engage a larger viewing audience. A 'Do It Yourself' (DIY) component will help scientists to create their, professional-caliber media that will sustain the publics' interest and feedback in their research. An evaluation regime will insure appropriate quality and depth of communication, throughout the lifecycle of each science story.
DATE: -
TEAM MEMBERS: Liz OConnell Robert McCoy Gregory Newby
resource research Media and Technology
‘Who’s Asking: Native Science, Western Science, and Science Education’ explores two key questions for science education, communication and engagement; first, what is science and second, what do different ways of understanding science mean for science and for science engagement practices? Medin and Bang have combined perspectives from the social studies of science, philosophy of science and science education to argue that science could be more inclusive if reframed as a diverse endeavour. Medin and Bang provide a useful, extensive and wide-ranging discussion of how science works, the nature of
DATE:
TEAM MEMBERS: emily dawson
resource project Public Programs
In late 2012, Providence Children’s Museum began a major three-year research project in collaboration with The Causality and Mind Lab at Brown University, funded by a grant from the National Science Foundation (1223777). Researchers at Brown examined how children develop scientific thinking skills and understand their own learning processes. The Museum examined what caregivers and informal educators understand about learning through play in its exhibits and how to support children’s metacognition – the ability to notice and reflect on their own thinking – and adults’ awareness and appreciation of kids’ thinking and learning through play. Drawing from fields like developmental psychology, informal education and museum visitor studies, the Museum’s exhibits team looked for indicators of children’s learning through play and interviewed parents and caregivers about what they noticed children doing in the exhibits, asking them to reflect on their children’s thinking. Based on the findings, the research team developed and tested new tools and activities to encourage caregivers to notice and appreciate the learning that takes place through play.
DATE: -
TEAM MEMBERS: Robin Meisner David Sobel Susan Letourneau Jessica Neuwirth Valerie Haggerty-Silva Chris Sancomb Camellia Sanford-Dolly Claire Quimby
resource research Media and Technology
Science communication as an interdisciplinary field of study has always been concerned with issues of knowledge utilisation. This theoretical paper focusses on the “knowledge” part of knowledge utilisation and provides a conceptual frame to distinguish between different types of knowledge in science-based practice. A practitioner’s knowledge store is portrayed as a dense set of personal knowledge, consisting of procedural knowledge, factual knowledge, potential factual knowledge and opinions/beliefs; the totality of which is continuously refined through more experiences and additional
DATE:
TEAM MEMBERS: Nelius Boshoff
resource project Public Programs
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
DATE: -
TEAM MEMBERS: Nancy Walsh Kathleen Tinworth Andrea Giron Ka Yu Lynn Dierking Megan John Polly Andrews John H Falk
resource research Media and Technology
Through this review of research on public engagement with science, Feinstein, Allen, and Jenkins advocate supporting students as “competent outsiders”—untrained in formal sciences, yet using science in ways relevant to their lives. Both formal and informal settings can be well suited for work in which students translate scientific content and practices into meaningful actions.
DATE:
TEAM MEMBERS: Elaine Klein
resource evaluation Exhibitions
The Smithsonian’s National Museum of Natural History (NMNH) contracted Randi Korn & Associates, Inc. (RK&A) to conduct a multi-method summative evaluation of Q?rius, an interactive and experimental learning space that brings the unique assets of NMNH—the science, researchers, and collections—out from behind the scenes. Q?rius is designed as a flexible space for walk-in visitors visiting exhibitions at the Museum as well as a program space. Given the breadth of experiences available in the space, the scope of the evaluation specifically targeted walk-in youth and adult visitors to Q?rius.
DATE:
TEAM MEMBERS: Amanda Krantz
resource project Media and Technology
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
DATE: -
TEAM MEMBERS: Alan Winick
resource research Public Programs
We aim to understand how to help young people recognize the value of science in their lives and take initiative to see the world in scientific ways. Our approach has been to design life-relevant science-learning programs that engage middle-school learners in science through pursuit of personally meaningful goals. In this paper, we analyze the case studies of two focal learners in the Kitchen Science Investigators life-relevant, science-learning program. Our analysis highlights ways to design life-relevant science-learning programs to help learners connect science to their everyday lives in
DATE:
TEAM MEMBERS: Tamara Clegg Janet Kolodner
resource project Public Programs
Brookfield Zoo will develop a model for formal and informal early childhood educators in the Chicago metropolitan area to promote children and family learning (nature play, exploration, and scientific inquiry) within urban environments. In collaboration with the Forest Preserve District of Cook County and the Mary Crane and El Valor Head Start centers in Chicago, Brookfield Zoo will train 80 early childhood educators in its established nature play curriculum; facilitate networking opportunities between participants and organizations; and host a two-day symposium for 150 early childhood educators at the end of the project. This partnership has built-in capacity for expansion within Chicago and throughout the region, and can serve as a replicable model for zoos, nature preserves, and Head Start programs throughout the country to increase opportunities children have to play, explore, and learn in nature as a basis for developing lifelong environmental stewardship.
DATE: -
TEAM MEMBERS: David Becker
resource project Professional Development, Conferences, and Networks
Arkansas State University (ASU) Museum will offer engaging STEM (Science, Technology, Engineering, and Math) learning experiences for children, at-risk youth, and teachers through three years of membership in the Arkansas Discovery Network, a coalition of seven Arkansas museums that develops and shares children's exhibits. Membership in the network will entitle ASU to nine high-quality, hands-on, STEM-based exhibits that promote "learning by doing" and the needed training in their STEM programming for educators. ASU Museum staff will build substantially upon these exhibits by developing many new and engaging tours, gallery activities, and programs that ensure STEM content registers in learners. This project will enable the museum to offer exceptional experiences with the potential to change attitudes about the value of learning in the targeted audiences in Northeast Arkansas.
DATE: -
TEAM MEMBERS: Marti Allen