Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
Data science is ever-present in modern life. The need to learn with and about data science is becoming increasingly important in a world where the quantity of data is constantly growing, where one’s own data are often being harvested and marketed, where data science career opportunities are rapidly increasing, and where understanding statistics, data sources, and data representation is integral to understanding STEM and the world around us. Museums have the opportunity to play a critical role in introducing the public to data science concepts in ways that center personal relevance, social connections and collaborative learning. However, data science and statistics are difficult concepts to distill and provide meaningful engagement with during the brief learning experiences typical to science museums. This Pilot and Feasibility study brings together data scientists, data science educators, and museum exhibit designers to consider these questions:


What are the important data science concepts for the public to explore and understand in museum exhibits?
How can museum exhibits be designed to support visitors with diverse backgrounds and experiences to engage with these data science concepts?
What principles can shape these designs to promote broadening participation in data science specifically and STEM more broadly?



This Pilot and Feasibility project combines multidisciplinary expert convening, feasibility testing, and early exploratory prototyping around the focal topic of data science exhibits. Project partners, TERC, the Museum of Science, Boston, and The Tech Interactive in San Jose will engage in an iterative process to develop a theoretical grounding and practical guidance for museum practitioners. The project will include two convenings, bringing together teams of experts from the fields of data science, data science education and museum exhibit design. Prior to the first convening, an initial literature summary and a survey of convening participants will be conducted, culminating in a preliminary list of big ideas about data science. Periodically, participants will have the opportunity to rank, annotate and expand this list, as a form of ongoing data collection. During the convenings, participants will explore the preliminary list, share related work from the three disciplines, engage with related data science activities in small groups, and work together to build consensus around promising data science topics and approaches for exhibits. Participant evaluation will allow for iterative improvement of the convenings and the capture of missed points or overlooked topics. After each convening, museum partners will create prototypes that respond to the convening conversations. Prototypes will be pilot tested (evaluated) with an intentionally recruited group of families that includes both frequent visitors and those who are less likely to visit the museum; diversity in terms of race, languages and dis/ability will be reflected in selection. Pilot data collection will consist of structured observations and interviews. Results from the first round of prototyping will be shared with convening participants as a way to modify the list of big ideas and to further interrogate the feasibility of communicating these ideas in an exhibit format. Results from the convenings and from both rounds of prototyping will be combined in a guiding document that will be shared on all three partner websites, and more broadly with the informal STEM learning field. The team will also host a workshop for practitioners interested in designing data science exhibits, and present at a conference focused on museum exhibits and their design.
DATE: -
TEAM MEMBERS: Andee Rubin
resource project Public Programs
This award was provided as part of NSF's Social, Behavioral and Economic Sciences Postdoctoral Research Fellowships (SPRF) program and is supported by SBE's Developmental Sciences program and the Directorate for Education and Human Resources' (EHR) Advancing Informal STEM Learning program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. Sandra D. Simpkins at the University of California, Irvine, this postdoctoral fellowship award supports an early career scientist exploring high-quality and culturally responsive, math afterschool program (ASP) practices for under-represented minority (URM) youth. Mathematical proficiency is the foundation of youth's STEM pursuits. Yet today, far too many youth do not pursue STEM based on a perception that they are "not good at math". Students need to engage in contexts that spark their interest and their continued mastery and growth. ASPs are settings for such dynamic opportunities, particularly for URM students such as Latinos who attend lower quality schools and do not feel supported. In college, URM students often struggle with uninspiring and culturally incongruent STEM learning environments. The intergenerational nature of university-based STEM ASPs, whereby younger students are paired with undergraduate (UG) mentors, are opportunities to support both K-12 and UG students' motivational beliefs in math and STEM more broadly. This project will examine these intergenerational developmental processes in the context of a math enrichment ASP located at a Hispanic-Serving Institution. By studying how ASPs can serve as an important lever for promoting URM students' access and success in STEM, this project seeks to meaningfully inform efforts to broaden the participation of underrepresented groups in these fields.

This project seeks to understand how participating in a math enrichment ASP supports both youth participants' and UG mentors' motivational beliefs in math; to describe high-quality and culturally responsive practices; and to understand how to support the effectiveness of youth-staff relationships. To accomplish these research objectives, data will be collected from both youth participants and UG mentors through multiple methods including surveys, in-depth interviews, participant-observations, and video observations of youth-staff interactions. This project will add to our understanding of university-ASP partnerships. Further, the knowledge gained from this study will impact the larger landscape of practice and research on STEM ASPs by 1) addressing critical gaps in the current literature on high-quality and culturally responsive STEM ASP practices and 2) informing ASP staff development training. Overall, this mixed methods project will provide critical and rich information on the ways that ASPs can effectively deliver on its promise of promoting positive development for all youth, especially URM youth who may need and benefit from these spaces the most. The invaluable insight garnered from this study will be disseminated to traditional academic audiences to advance knowledge, as well as to local, state, and national organizations to inform the larger landscape of practice in STEM ASPs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Vincent Yu Sandra Simpkins
resource project Summer and Extended Camps
This NSF INCLUDES Design and Development Launch Pilot is to expand the Navajo Nation Math Circle model to other sites, and to develop and launch a network of math circles based on the NNMC model. The Navajo Nation Math Circle model is a novel approach to broadening the participation of indigenous peoples in mathematics that, ultimately, seeks to improve American Indian students' attitudes towards mathematics, persistence with challenging problems, and grades in math courses. Navajo Nation Math Circles bring teachers, students, and mathematicians together to work collaboratively on challenging, but meaningful and fun, math problems. Through this NSF INCLUDES project, additional math circles across the Navajo Nation will be launched and a mirror site in Washington State serving additional tribes (such as Puyallup, Muckleshoot, Tulalip, and Stillaguamish) will be established.

Originating approximately a century ago in Eastern Europe as a means to engage students in mathematical thinking, math circles bring teachers, students, and math professionals together to work collaboratively on challenging, but relevant and interesting, math problems. Navajo Nation Math Circles, established math circles in various Navajo Nation communities, are the foundation of this INCLUDES project. One goal of this effort is to launch a network with the capacity to support the replication and adaption of math circles in multiple sites as an innovative strategy for encouraging indigenous math engagement through culturally enriched open-ended group math explorations. In addition, the Navajo Nation Math Circle model will be expanded to new math circles in the Navajo Nation, as well as in Washington State to serve additional tribes. Cells in the network will implement key elements of the Navajo Nation Math Circle model, adapting them to their particular contexts. Such elements include facilitation of open-ended group math explorations, incorporating indigenous knowledge systems; a Mathematical Visitor Program sending mathematicians to schools to work with students and their teachers; inclusion of mathematics in public festivals to increase community mathematical awareness; a two-week summer math camp for students; and teacher development opportunities ranging from workshops to immersion experiences to a mentoring program pairing teachers with mathematicians.
DATE: -
TEAM MEMBERS: David Auckly Henry Fowler Jayadev Athreya
resource project Professional Development, Conferences, and Networks
The American Association for the Advancement of Science (AAAS) and the National Science Foundation (NSF) will continue its collaboration in providing to early- and mid-career scientists and engineers experiential professional development and public service fellowships via the AAAS Science and Technology Fellowship Program. Consistent with the immersion model adopted by AAAS, Fellows at NSF will be selected annually through a competitive process and placed in organizations throughout the Foundation. Fellows will work with NSF staff on a broad range of activities in order to gain insight into how national science and technology policy goals are translated into and reflected by NSF's mission and strategic goals and how and by whom national science and technology policy is driven, shaped and prioritized. NSF fellowship assignments are designed to: educate and expose Fellows to NSF programmatic planning, development and oversight activities in all fields of fundamental research via hands-on engagement; utilize the Fellows' expertise on projects that apprise NSF officials in areas of mutual interest to the Fellow and the host organization; and provide developmental opportunities to inform future career decisions. The program includes an orientation on executive branch and congressional operations, as well as a year-long suite of knowledge- and skill-building seminars involving science, technology and public policy within the federal as well as NSF contexts.

In the long-term, the AAAS Fellowship program seeks to build leadership capacity for a strong national science and engineering enterprise. Upon completion of the Fellowship, Fellows will have gained: a broader understanding and increased insights about the development and execution of federal-level science, technology, engineering and mathematics policies and initiatives as well as how policy and science intersect; enhanced skills in communicating science to support policy development; and a greater capacity to serve more effectively in future leadership roles in diverse environments, including public and policy arenas, academia and the private sector. The ultimate outcome of the Fellowship program experience -- policy savvy science and engineer leaders who understand government and policymaking and are well-trained to develop and execute solutions to address the nation's challenges.
DATE: -
TEAM MEMBERS: Olga Francois Cynthia Robinson
resource research Public Programs
The Montana Girls STEM Collaborative brings together organizations and individuals throughout Montana who are committed to informing and motivating girls to pursue careers in STEM – Science, Technology, Engineering and Mathematics. The Collaborative offers professional development, networking and collaboration opportunities to adults who offer and/or support STEM programs for girls and other youth typically under-represented in STEM. The vision of Montana Girls STEM is that every young person in Montana has the opportunity to learn about STEM careers and feels welcome pursuing any dream they
DATE:
TEAM MEMBERS: Suzi Taylor Ray Callaway Cathy Witlock
resource project Professional Development, Conferences, and Networks
Physics awards smaller percentages of PhDs to women (19%) and underrepresented ethnic and racial minorities (7%) than any other field in the sciences, and underrepresentation is especially pronounced at selective universities. As global competition for scientific talent heats up and US demographics shift, cultivating a robust domestic workforce is critical to US technological leadership. We seek to build on the successful American Physical Society Bridge Program (apsbridgeprogram.org) by transforming physics graduate education to fully support the inclusion of women and ethnic and racial minorities. Our vision is to create a national network of disciplinary colleagues, expert researchers, and representatives from professional associations who will develop and build evidence-based knowledge of effective practices for recruitment, admissions, and retention of women and underrepresented ethnic and racial minorities. This pilot project will include six large, highly selective physics graduate programs to demonstrate and map out a plan for a discipline-wide effort. The pilot focuses on improving admissions practices, because this strategy promises immediate and measurable impact backed by extant research. The pilot will also take exploratory steps to develop scalable recruitment and retention strategies. To refine interventions, we will conduct research to identify and understand demographically-based loss points of students in graduate physics programs and to understand how network participation facilitates change. The project will also establish connections with other STEM disciplines, beginning with mathematics and chemistry, to explore expanding these efforts.

This project is grounded in research on diversity in graduate education, organizational learning, and the resources of networks to catalyze cultural change. The project team includes expertise in institutional change, graduate admissions, student success, diverse and inclusive environments, and social science research. The pilot advances a novel research agenda on inclusion in STEM by addressing recruitment, admissions, and retention in physics graduate education as interconnected challenges of faculty learning, professional networks, and disciplinary cultural change. Physics graduate programs will report admissions data and common metrics, and will document changes resulting from project activities. Faculty will be trained on holistic admissions and diversity in selection processes, and be guided in the use of inclusive admissions practices. An external evaluator will examine project effectiveness and readiness for scaling to an Alliance phase project.
DATE: -
TEAM MEMBERS: Monica Plisch Theodore Hodapp Julie Posselt Geraldine Cochran Casey Miller
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The National Association of Math Circles (NAMC) will convene the Math Circle-Mentor and Partnership (MC-MAP) Workshop in late 2016. The proposed MC-MAP workshop will build the field's understanding of the training content and mechanisms that enhance the knowledge and skill development of participants in Math Circles. The workshop will bring mentors from experienced Math Circle leaders together with novice Math Circle leaders to develop the expertise of the notice leaders and their group to develop their expertise in facilitating math circle activities and in organizing related events. The approximately 180 Math Circles currently operating across the nation enlist mathematics professionals to share their passion for mathematics with K-12 students, teachers, and the general public in contexts that emphasize exploration, problem solving and discovery. This initial conference and Math Circle trainings informed by this conference will help build a community of practice around Math Circles through which novice and existing leaders are connected, encouraged and inspired.

The MC-MAP workshop will include structured planning as well as guided observation and structured debriefing of a demonstration Math Circle sessions. The workshop design will be grounded in research related to effective adult learning and to discovery-based mathematics. The workshop will serve as a training prototype that will assist the National Association of Math Circles to identify effective training formats and materials for both experienced and novice Math Circle leaders. Pre- and post- conference surveys of Math Circle leaders will produce data to be used in planning and designing future trainings. The NAMC will share key findings from the workshop evaluation and workshop resources not only with its membership, but also with other mathematics K-12 outreach programs. Workshop materials will address recruiting and serving diverse participants in Math Circles, including girls and women, persons with disabilities, students from varied socioeconomic backgrounds and underrepresented minorities in STEM.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This proposed effort embraces broad participation by the three Ute tribes, History Colorado, and scientists in the field of archaeology to investigate and integrate traditional ecological knowledge and contemporary Western science. The project will preserve knowledge from the Ute peoples of Colorado and Utah, including traditional technology, ethnobotany, engineering and math. Results from this project will inform educational efforts in similar communities.

This project will build on the long-standing collaborations between History Colorado (HC), the Southern Ute Indian Tribe, Ute Mountain Ute Tribe and Ute Indian Tribe, Uintah & Ouray Reservation, and the Dominguez Archaeological Research Group DARG). HC will implement and evaluate a regional informal learning collaboration focused on Ute traditional and contemporary STEM knowledge serving over 128,000 learners through tribal programs, local history museums and educational networks. This project will advance the understanding of integrated knowledge and the role of Ute people as STEM learners and practitioners. This Informal Science Learning project will increase lifelong STEM learning in rural communities and create a replicable model for collaboration among tribes, history museums, and scientists.
DATE: -
TEAM MEMBERS: Liz Cook Sheila Goff Shannon Voirol JJ Rutherford
resource research Media and Technology
Popularising mathematics requires a preliminary reflection on language and terms, the choice of which results from underlying dynamics. The aim of this article is to start an overall analysis of the conditions influencing this linguistic choice.
DATE:
TEAM MEMBERS: Daniele Gouthier
resource project Professional Development, Conferences, and Networks
The Center for Advancement of Informal Science Education (CAISE), a cooperative agreement with the National Science Foundation Advancing Informal STEM Learning (AISL) program, is a partnership of the Association of Science-Technology Centers with faculty and professionals from the University of Pittsburgh Center for Learning in Out-of-School Environments (UPCLOSE), Oregon State University (OSU), the Great Lakes Science Center, KQED Public Media, advisors and other collaborators. CAISE works to support and resource ongoing improvement of, and NSF investments in, the national infrastructure for informal Science Technology Engineering and Mathematics (STEM) education. CAISE's roles are to build capacity and support continued professionalization for the field by fostering a community that bridges the many varied forms in which informal STEM learning experiences are developed and delivered for learners of all ages. To that end, CAISE activities also include: creating field-driven evidence databases about the impacts of informal STEM education; facilitating federated searches of those databases; furthering dialogue and knowledge transfer between learning research and practice; working to enhance the quality and diversity of evaluation knowledge and processes; and helping STEM researchers improve their efforts in informal STEM education, outreach and communication. For Principal Investigators (PIs) and potential PIs, CAISE provides resources that can assist in the development of evidence-based proposals. It also facilitates and strengthens networks through PI meetings, communications, and other methods that encourage sharing of deliverables, practices, outcomes and findings across projects. For the AISL Program at NSF, CAISE is assisting program officers in understanding the portfolio of awards, identifying the portfolio's impacts in key areas, and integrating the program's investments in education infrastructure.
DATE: -
resource project Professional Development, Conferences, and Networks
Expanding on the encouraging outcomes of an NSF-funded conference, this three-year project led by the National Center for Science and Civic Engagement at Harrisburg University of Science and Technology, in collaboration with the Koshland Science Museum of the National Academy of Sciences, will explore and evaluate ways to support new collaborations between professionals in institutions of higher education and informal STEM education around areas of common interest. The primary goal is to develop the educational infrastructure to grow and efficiently sustain multiple cross-organizational partnership activities at the intersection of learning about science, society and civic engagement around such possible topics as energy, environment, genetics, earth resources, computers and ethics, nanotechnology, etc. The initiative is: 1) creating a joint organizing "secretariat" to provide communications and support through low-cost shared services for at least six partnerships around the country; 2) providing partnership support and technical assistance to seed the six national partnerships, and 3) sharing evaluation and analysis services across all the partnerships. The outcomes of the work pertain to improvements in professional knowledge and practice in higher education and informal science education, as well as the improvement of learning by undergraduates and by the general public.
DATE: -
TEAM MEMBERS: William Burns Hailey Chenevert
resource research Professional Development, Conferences, and Networks
This article from the Center for Advancement of Informal Science Education (CAISE) offers an introduction to the field of informal STEM education (ISE). It provides a brief survey of informal STEM education projects related to biology and discusses opportunities for scientists to become involved.
DATE: