Skip to main content

Community Repository Search Results

resource project Public Programs
The Museo de Arte de Puerto Rico will develop and implement "Art and Technology," which will provide learning opportunities to at-risk youth in the San Juan metropolitan area by integrating the museum's exhibits and collections as a platform for learning activities and dynamic thinking. Through lessons on digital media, photography, and art aligning with academic standards, students will acquire technology and problem-solving skills, language proficiency and communication skills, the ability to better interact with peers, and enhanced information skills. At-risk youth will be able to use the museum as an innovative learning facility with free art and technological resources to develop their skills to learn, create, and share with their peers their work in a safe environment.
DATE: -
TEAM MEMBERS: Doreen Colon-Camacho
resource project Public Programs
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.

The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
DATE: -
TEAM MEMBERS: Sherry Hsi Michael Eisenberg
resource project Professional Development, Conferences, and Networks
The National Writing Project (NWP) is collaborating with the Association of Science-Technology Centers (ASTC) on a four-year, full-scale development project that is designed to integrate science and literacy. Partnerships will be formed between NWP sites and ASTC member science centers and museums to develop, test, and refine innovative programs for educators and youth, resulting in the creation of a unique learning network. The project highlights the critical need for the integration of science and literacy and builds on recommendations in the Common Core State Standards and the National Research Council's publication, "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The content focus includes current topics in science and technology such as environmental science, sustainability, synthetic biology, geoengineering, and other subjects which align with science center research and exhibits. The project design is supported by a framework that incorporates a constructivist/inquiry-based approach that capitalizes on the synergy between rigorous science learning and robust literacy practices. Project deliverables include a set of 10 local partnership sites, professional development for network members, a project website, and an evaluation report highlighting lessons learned. Partnership sites will be selected based on interest, proximity, history, and expertise. Two geographically and demographically diverse cohorts, consisting of five partnerships each will be identified in Years 2 and 3. Each set of partners will be charged with creating a comprehensive two-year plan for science literacy activities and products to be implemented at local sites. It is anticipated that the pilot programs may result in the creation of new programs that merge science and writing, integrate writing into existing museum science programs, or integrate science activities into existing NWP programs. Interest-driven youth projects such as citizen science and science journalism activities are examples of programmatic approaches that may be adopted. The partners will convene periodically for planning and professional development focused on the integration of science and literacy for public and professional audiences, provided in part by national practitioners and research experts. A network Design Team that includes leadership representatives from NWP, ASTC, and the project evaluator, Inverness Research, Inc., will oversee project efforts in conjunction with a national advisory board, while a Partnership Coordinator will provide support for the local sites. Inverness Research will conduct a multi-level evaluation to address the following questions: -What is the nature and quality of the local partner arrangements, and the larger network as a whole? -What is the nature and quality of the local science literacy programs that local partners initiate, and how do they engage local participants, and develop their sense of inquiry and communication skills? First, a Designed-Based Implementation Research approach will be used for the developmental evaluation to assess the implementation process. Next, the documentation and portrayal phase will assess the benefits to youth, educators, institutions, and the field using surveys, interviews, observations of educators, and reviews of science communication efforts created by youth. Finally, the summative evaluation includes a comprehensive portfolio of evidence to document the audience impacts and an independent assessment of the project model by an Evaluation Review Board. This project will result in the creation of a robust learning community while contributing knowledge and lessons learned to the field about networks and innovative partnerships. It is anticipated that formal and informal educators will gain increased knowledge about science and literacy programs and develop skills to provide effective programs, while youth will demonstrate increased understanding of key science concepts and the ability to communicate science. Programs created by the local partnerships will serve approximately 650 educators (450 informal educators and 200 K-12 teachers) and 500 youth ages 9-18. Plans for dissemination, expansion, and sustainability will be undertaken by the sub-networks of the collaborating national organizations drawing on the 350 ASTC member institutions and nearly 200 NWP sites at colleges and universities.
DATE: -
resource project Media and Technology
This pathways project would refine and test a game based on the Kinect technology gaming tool to teach seismology concepts in an informal education setting and how they apply to phenomenon in other STEM fields. The game will be developed as a companion tool to the "Quake Catcher Network" a low-cost network of seismic sensors in schools, homes and offices world-wide and tie-ins with seismology programs such as the great California ShakeOut with a participant base of 8.6 million. The project design would select three new learning modules, chosen by a group of scientists and educators, to incorporate into the game and evaluate player experience and knowledge gain. The activities will be conducted at a partner test site, an aquarium, frequented by area youth 8 - 12 years old. The focus of the effort is to add to the knowledge of how gaming can be used effectively in informal learning environments The game places the player as a scientist, allowing the player to make decisions about seismic station deployment strategies following an earthquake, installing the sensors and monitoring incoming data. The game has levels of difficulty and players accrue points by acting swiftly and correctly. Learning goals for the project include making abstract math concepts understandable; involve participants in data collection and the process of scientific investigation, plus demonstrate how scientists and mathematicians use tools of their fields to address real-world issues.
DATE: -
TEAM MEMBERS: Deborah Kilb
resource research Public Programs
This article from "The Atlantic" describes ways that teachers are integrating hands-on and experiential STEM learning into the classroom, which include collaboration with informal learning environments through creative field trips.
DATE:
TEAM MEMBERS: Alexandra Ossola
resource project Public Programs
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
DATE: -
resource project Media and Technology
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE: -
TEAM MEMBERS: James Diamond New York City Hive Learning Network MOUSE DigitalMe Katherine McMillan
resource project Public Programs
President Obama announced in April 2013 that the Corporation for National and Community Service (CNCS) would launch a STEM AmeriCorps initiative to build student interest in STEM. A RFA is currently being prepared to be released in the late fall of 2013. This project will engage in quick response research to identify an evaluation and research agenda that can begin to inform the program launch. Thus, the timeframe for informing the initial stages of STEM AmeriCorps is relatively short, and the creation of an evaluation and research agenda is very timely. The products from the RAPID proposal are: (1) a review of the evaluation and research literature on the use of volunteers and/or mentors to build students' interest in STEM; (2) to convene a workshop to identify evaluation and research priorities to guide the initiative; and (3) a summary evaluation agenda that identifies promising directions along with the strength of evidence around key issues.
DATE: -
TEAM MEMBERS: Beth Gamse Alina Martinez
resource project Public Programs
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
DATE: -
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help in envisioning the next generation of learning technologies and advancing what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that showed the possibilities of the proposed new type of learning technology, and project teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and answer questions about how people learn with technology. Although for years researchers have believed technology could afford anytime-anywhere learning, we still don't understand how learners behave differently across contexts, such as home, school, and in the community, and how to get youth to identify as learners across those contexts. This proposal aims to use mobile devices and strategically placed shared kiosks to 'scientize' youth in two low-income communities. Through strategic partnerships with community organizations, educators, and families, the innovation is to get primary and middle-school students engaging in scientific inquiry in the context of their neighborhoods. Research will help determine how the technology can best be deployed, but also answer important questions about how communities can provide support to help kids think like scientists and identify with science. This project will design and implement ubiquitous technology tools that include mobile social media and tangible, community displays (collectively called ScienceKit) that are deeply embedded into two urban neighborhoods, and demonstrate how such ubiquitous technologies and related cyberlearning strategies are vital to improve information flow and coordination across a neighborhood ecosystem, in order to create environments where children can connect their science learning across contexts and time (e.g. scientizing). A program called ScienceEverywhere comprised of partnerships between tightly connected neighborhood organizations with mentors, teachers, parents, and researchers will help learners develop scientifically literate practices both in and out of school, and will demonstrate students' learning to their communities. Research will consist of mixed methods studies of use of the tools, including iterative design-based research, ethnography, and the use of participant observers from the community; these will be triangulated with usage logs of the technologies and content analysis of microblogs by the learners on their identities and interests. Discourse analysis of interviews with focal learners will orient the qualitative work on identity development, and analysis using activity theory will inform the influences of the social practices and sociotechnical systems on learner trajectories. Formative evaluation will help shed light on if and how the sociotechnical system promotes STEM literacy and STEM identity development.
DATE: -
TEAM MEMBERS: Tamara Clegg June Ahn Jason Yip
resource evaluation Media and Technology
A two stage summative evaluation was conducted following the launch of the Mystic Seaport for Educators website, the final output resulting from the IMLS National Leadership grant entitled Mystic E-Port Digital Classroom project. The results of four focus groups, conducted in two phases, found consistent results suggesting that the project was successful at achieving all four goals as outlined in the original grant proposal. Appendix includes focus group protocol.
DATE:
TEAM MEMBERS: Mystic Seaport John Fraser
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California.
DATE:
TEAM MEMBERS: Edwin Obergfell Philip Villamor