Skip to main content

Community Repository Search Results

resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource project Media and Technology
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
DATE: -
TEAM MEMBERS: Yasmin Kafai Karen Elinich Orkan Telhan
resource evaluation Media and Technology
This report was completed by the Program Evaluation Research Group at Endicott College in October 2013. It describes the outcomes and impacts of a four-year, NSF-funded project called Go Botany: Integrated Tools to Advance Botanical Learning (grant number 0840186). Go Botany focuses on fostering increased interest in and knowledge of botany among youth and adults in New England. This was being done through the creation of an online flora for the region, along with the development of related tools, including PlantShare, and a user-friendly interface for ‘smartphones’. In January 2012, the PI
DATE:
TEAM MEMBERS: Judah Leblang New England Wild Flower Society
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource evaluation Exhibitions
Roto, an exhibition design and production firm, contracted Randi Korn & Associates, Inc. (RK&A) to conduct a front-end evaluation of Speed, an exhibition being developed for The Science Museum of Virginia (SMV) in Richmond, Virginia. RK&A explored visitors’ thoughts, perceptions, and understandings of exhibition concepts related to speed, defined as change over time. How did we approach this study? RK&A worked closely with Roto to identify the goals and objectives for the Speed exhibition. Findings from the front-end evaluation were designed to help Roto and SMV find common ground between
DATE:
TEAM MEMBERS: Randi Korn & Associates, Inc. Randi Korn Emily Skidmore Roslyn Esperon
resource research Media and Technology
The authors provide an analysis of pairs of children interacting with a multi-touch tabletop exhibit designed to help museum visitors learn about evolution and the tree of life. The exhibit’s aim is to inspire visitors with a sense of wonder at life’s diversity while providing insight into key evolutionary concepts such as common descent. The authors find that children negotiate their interaction with the exhibit in a variety of ways including reactive, articulated, and contemplated exploration. These strategies in turn influence the ways in which children make meaning through their
DATE:
TEAM MEMBERS: Northwestern University Pryce Davis Michael Horn Laurel Schrementi Florian Block Brenda Phillips E. Margaret Evans Judy Diamond Chia Shen
resource project Media and Technology
Dinosaur Island is a 3D computer simulation with herds of sauropods and ceratopsians, flocks of pteranodons, hunting packs of carnivores and authentic plants and trees from over 65 million years ago all controlled by the user. You can think of Dinosaur Island as a digital terrarium in which a balance between the species and their diets must be maintained or the ecosystem will collapse. It is up to the user to determine how many and what kinds of dinosaurs and plants populate the island. Start off simple with just a few sauropods and some plants; but you better make sure that those big plant-eaters have the right food to eat. Did you know that many of the plants from the Jurassic were poisonous? You also need to make sure that there are some carnivores around to keep those sauropod herds in check; otherwise they will quickly outstrip their food supplies. Dinosaur Island is an Adventure: Yes, it is a bit like those famous movies because you can take 'photographs' of your dinosaurs, save them, post them and share them with your friends (you can even 'name' your dinosaurs, 'tag' them and track them throughout their lives). You will be able to walk' with the dinosaurs without being trampled under their giant feet. You will be able to follow along when a female T-Rex goes out to hunt without fear of becoming dinner for her family. You will be able to 'garden' by 'planting' vegetation where you like and watch the plants grow over time. Dinosaur Island is Educational: Our reputation – both in our 'serious games' and our contracted simulations – is for historical accuracy. All of our computer games, serious games and simulations are meticulously researched. Dinosaur Island will also include an extensive hyperlinked interactive 'booklet' about the dinosaurs that live on Dinosaur Island, their habitat and the plants and vegetation that grow there. Designasaurus, the game that we created in 1987, was named Educational Game of the Year. We will exploit the computer environment that is now available (more memory and faster machines allow for 3D rendering) to make Dinosaur Island even more of an immersive educational experience. Dinosaur Island is Fun: Playing with herds of dinosaurs is just good fun. You can 'pick them up' and move them around, plant crops for them to eat or you can even 'get inside' a dinosaur and control its actions. Regardless of your age, Dinosaur Island is guaranteed to be hours of fun.
DATE: -
TEAM MEMBERS: Ezra Sidran