Skip to main content

Community Repository Search Results

resource project Exhibitions
History Colorado (HC) conducted an NSF AISL Innovations in Development project known as Ute STEM.
DATE: -
TEAM MEMBERS: Elizabeth Cook Sheila Goff Shannon Voirol JJ Rutherford
resource project Exhibitions
Many urgent environmental challenges, from soil degradation and water pollution to global climate change, have deep roots in how complex systems impact human well-being, and how humans relate to nature and to each other. Learning In and From the Environment through Multiple Ways of Knowing (LIFEways) is based on the premise that Indigenous stewardship has sustained communities on these lands since time immemorial. This project is collaboratively led by the Indigenous Education Institute and Oregon State University’s STEM Research Center, in partnership with Native Pathways and the Reimagine Research Group, Swinomish Indian Tribal Community, Oregon Museum of Science and Industry, World Forestry Center, and a national park network in the Pacific Northwest. The aim of this partnership is to deepen the informal learning field’s understanding of how Indigenous ways of knowing are currently or can be included in outdoor learning environments such as parks, nature preserves, and tribal lands. The project will share practices that center Indigenous worldviews to build awareness of their value and enhance STEM learning in outdoor settings. These approaches engage Native community members in continuing their traditional knowledge and practices, and help non-Native audiences learn from the dynamic interrelationships of the environment in authentic, respectful ways.

Conventional outdoor education is mostly grounded in Western concepts of “conservation” and “preservation” that position humans as acting separately from nature. This Research in Service to Practice project will identify “wise practices” that honor Indigenous ways of knowing, and investigate current capacities, barriers and opportunities for amplifying Indigenous voices in outdoor education. A team of Native and non-Native researchers and practitioners will draw upon Indigenous and Western research paradigms. Methods include Talk Story dialogues, a landscape study using national surveys, case studies, and a Circle of Relations to interpret and disseminate research findings. LIFEways will also document partnership processes to continue to build on the Collaboration with Integrity framework between tribal and non-tribal organizations (Maryboy and Begay, 2012). Findings from the LIFEways project will be shared broadly through a series of webinars, local and national meetings, conferences, and publications.
DATE: -
TEAM MEMBERS: Martin Storksdieck Larry Campbell Nancy Maryboy David Begay Shelly Valdez Jill Stein Jamie Donatuto Ashley Teren Ka’iu Kimura Chris Cable Victoria Coats Andrew Haight Tim Hecox Elexis Fredy Greg Archuleta Geanna Capitan Vernon Chimegalrea Joe E Heimlich Herb Lee David Lewis Carol McBryant Sadie Olsen Laura Peticolas Stephanie Ratcliffe Darryl Reano Craig Strang Kyle Swimmer Polly Walker Tim Watkins Shawn Wilson Pam Woodis
resource project Exhibitions
This project is designed to support collaboration between informal STEM learning (ISL) researchers, designers, and educators with sound researchers and acoustic ecologists to jointly explore the role of auditory experiences—soundscapes—on learning. In informal STEM learning spaces, where conversation advances STEM learning and is a vital part of the experience of exploring STEM phenomena with family and friends, attention to the impacts of soundscapes can have an important bearing on learning. Understanding how soundscapes may facilitate, spark, distract from, or even overwhelm thinking and conversation will provide ISL educators and designers evidence to inform their practice. The project is structured to reflect the complexity of ISL audiences and experiences; thus, partners include the North Park Village Nature Center located in in a diverse immigrant neighborhood in Chicago; Wild Indigo, a Great Lakes Audubon program primarily serving African American visitors in Midwest cities; an after-school/summer camp provider, STEAMing Ahead New Mexico, serving families in the rural southwest corner of New Mexico, and four sites in Ohio, MetroParks, Columbus Zoo and Aquarium, Franklin Park Conservatory and Botanical Gardens, and the Center of Science and Industry.

Investigators will conduct large-scale exploratory research to answer an understudied research question: How do environmental sounds impact STEM learning in informal learning spaces?  Researchers and practitioners will characterize and describe the soundscapes throughout the different outdoor and indoor exhibit/learning spaces. Researchers will observe 800 visitors, tracking attraction, attention, dwell time, and shared learning. In addition to observations, researchers will join another 150 visitors for think-aloud interviews, where researchers will walk alongside visitors and capture pertinent notes while visitors describe their experience in real time. Correlational and cluster analyses using machine learning algorithms will be used to identify patterns across different sounds, soundscapes, responses, and reflections of research participants. In particular, the analyses will identify characteristics of sounds that correlate with increased attention and shared learning. Throughout the project, a team of evaluators will monitor progress and support continuous improvement, including guidance for developing culturally responsive research metrics co-defined with project partners. Evaluators will also document the extent to which the project impacts capacity building, and influences planning and design considerations for project partners. This exploratory study is the initial in a larger research agenda, laying the groundwork for future experimental study designs that test causal claims about the relationships between specific soundscapes and visitor learning. Results of this study will be disseminated widely to informal learning researchers and practitioners through workshops, presentations, journal articles, facilitated conversations, and a short film that aligns with the focus and findings of the research.
DATE: -
TEAM MEMBERS: Martha Merson Justin Meyer Daniel Shanahan
resource project Exhibitions
Artificial intelligence (AI) is in many of our everyday activities—from unlocking phones to running Internet searches to parking cars. Yet, most instruction on how AI works is only in computer science courses. The unique role that AI plays in making decisions that affect human lives heightens the need for education approaches that promote public AI literacy. Little research has been done to understand how we can best teach AI in informal learning spaces. This project will engage middle school age youth in learning abouts AI through interaction with museum exhibits in science and technology centers. The exhibits employ embodied interactions and creative making activities that involve textiles, music making, and interactive media. The research will build on three exhibit prototypes that teach about concepts including bias in data in machine learning, AI decision-making processes, and how AI represents knowledge. Female-identifying and Title 1 youth will be recruited as participants during the exhibit design iterations and testing. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments

Researchers will explore two key research questions: 1) How can the design of interactive museum exhibits encourage interest development in and learning about AI among learners without a Computer Science background by using embodiment and creative making? and 2) How do embodied interaction and creative making mediate learning about AI in informal learning environments? The project will take a design-based research approach, iteratively building on existing exhibit prototypes and testing them in-situ with learners. Data sources and modes of analysis will include retrospective surveys to assess interest, content knowledge gain, creativity, learning talk analysis of audio recordings, and coding of embodied movements in video recordings. Learning talk analysis will identify instances of joint sensemaking during naturalistic interactions with our exhibit to reveal connections between sensemaking talk; learners' behaviors and embodied actions during real-time collaborative knowledge building; and outcomes in knowledge, interest, and creativity measures as elicited in retrospective surveys. The final set of exhibits will be rigorously evaluated with over 500 museum visitors. The key contributions of this work will include a set of rigorously tested exhibits, publicly available exhibit designs, a set of design guidelines for developing AI literacy museum exhibits, and an improved understanding of the relationship between AI-related learning and interest development, embodiment, and creativity.
DATE: -
TEAM MEMBERS: Brian Magerko Duri Long Jessica Roberts
resource project Exhibitions
This award is funded with support from NSF's program for Advancing Informal STEM Education.

This project develops a partnership between language researchers and Planet Word, a new museum devoted to language in Washington D.C., to engage museum visitors in scientific research and outreach. Interested museum visitors from all ages and backgrounds are invited to participate in behavioral research studies on a range of language-related topics. This "living language laboratory" of interactive studies includes accompanying educational demonstrations. These activities will lead to the development of infrastructure and best practices that will allow future language researchers to engage with the public at Planet Word and other similar sites.

The project enhances scientific understanding by engaging visitors in activities that expose them to active science about language as a part of their visit to the museum. For example, the research examines topics from understanding what makes certain American Sign Language signs more learnable, to why it is easier to understand people we know rather than strangers, to whether we think differently when we are reading a text message compared to reading more formal writing. In doing so, the project raises the profile of linguistics among the general public and promotes scientifically informed attitudes about language. The project also provides key opportunities to disseminate research findings of interest to the public and to promote greater interest in STEM topics among museum visitors, as well as student trainees and museum staff. The project creates educational and research opportunities for students, who will be trained in a hands-on course, and will gain first-hand experience with research and outreach in a museum setting. Through the collaborative partnership of researchers from University of Maryland, Howard University, and Gallaudet University, the project broadens participation of underrepresented minority students in the language sciences, seeking to diversify the pipeline of scholars continuing in careers in the language sciences and related STEM fields.
DATE: -
TEAM MEMBERS: Charlotte Vaughn Yi Ting Huang Deanna Gagne Patrick Plummer
resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Zoos and aquariums have been offering programming, events, and visit accommodations to autistic individuals for several years. While these efforts can provide great experiences, they are focused more on accommodation and the outward-facing guest experience than inclusion. Lack of inclusion features in design, programming, and representation amongst zoo and aquarium representatives, ultimately limits full inclusion and adds to a sense in autistic individuals of not belonging and not being welcomed. To develop a fully inclusive experience for autistic individuals, this project will develop an evidence-based framework of inclusive practices for zoos and aquariums and build a community of practice around inclusion broadly. The project brings together researchers from Oregon State University, Vanderbilt Kennedy Center’s Treatment and Research Institute for Autism Spectrum Disorders, and the Association of Zoos and Aquariums. Researchers will create and investigate the extent and ways in which a research-informed framework and associated tools (i.e. case studies, discussion guides, self-guided audits, etc.) and strategies support science learning for autistic individuals, and help practitioners expand access and inclusion of autistic audiences beyond special events or the general visit experience by applying inclusive practices for programs, exhibit development, internships, volunteer opportunities, and employment. To maximize impact, the project will develop and expand a network of early adopters to build a community of practice around inclusive practices to develop fully inclusive zoo and aquarium experiences for all individuals.

The project will investigate 4 research questions: (1) In what ways and to what extent are zoos and aquariums currently addressing access and inclusion for autistic individuals? (2) How do staff in zoos and aquariums perceive their and their institution’s willingness and ability to address access and inclusion for autistic individuals? (3) What is a framework of evidence-based practices across the zoo and aquarium experience that is inclusive for autistic individuals, and what associated tools and strategies are needed to make the framework useful for early adopters? And (4) to what extent and in what ways does a research informed framework with associated tools and strategies engage, support, and enhance an existing community of practitioners already dedicated to addressing autistic audiences and promote inclusive practices at zoos and aquariums for autistic people? The project is designed as two phases: (1) the research and development of a framework of inclusive practices and tools for supporting autistic individuals and (2) expanding a network of early adopters to build a community of practice around inclusive practices and an overall strategy of implementation. The framework will be informed through a state of the field study across the zoo/aquarium field that includes a landscape study and needs assessment as well as a review of literature that synthesizes existing research across disciplines for developing inclusive practices for autistic individuals in zoos and aquariums. The team will also conduct online surveys and focus groups to gather input from various stakeholders including zoo and aquarium employees and practitioners, autistic individuals, and their social groups (e.g., family members, peers, advocacy organizations). The second phase of the study will focus on sharing the framework and tools with practitioners across the zoo/aquarium field for feedback and reflection to develop an overall strategy for broader implementation and expanding the existing network of zoo and aquarium professionals to build a community of practice dedicated to the comprehensive inclusion of autistic individuals across the full zoo and aquarium experience. The results will be disseminated through conference presentations, scholarly publications, online discussion forums, and collaborative partners’ websites. The project represents one of the first of its kind on autistic audiences within the zoo and aquarium context and is the first to look at the full experience of autistic patrons to zoos and aquariums across programs/events, exhibits, volunteering, internship, and employment opportunities. A process evaluation conducted as part of the project will explore how the approach taken in this project may be more broadly applied in understanding and advancing inclusion for other audiences historically underserved or marginalized by zoos and aquariums.

This Research in Service to Practice project is supported by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kelly Riedinger Lauren Weaver Amy Rutherford
resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

The Accessible Oceans study will design auditory displays that support learning and understanding of ocean data in informal learning environments like museums, science centers, and aquariums. Most data presentations in these spaces use visual display techniques such as graphs, charts, and computer-generated visualizations, resulting in inequitable access for learners with vision impairment or other print-related disabilities. While music, sound effects, and environmental sounds are sometimes used, these audio methods are inadequate for conveying quantitative information. The project will use sonification (turning data into sound) to convey meaningful aspects of ocean science data to increase access to ocean data and ocean literacy. The project will advance knowledge on the design of auditory displays for all learners, with and without disabilities, as well as advance the use of technology for STEM formal and informal education. The study will include 425 participants but will reach tens of thousands through the development of education materials, public reporting, and social media. The study will partner with the Smithsonian National Museum of Natural History, Woods Hole Oceanographic Institution Ocean Discovery Center, the Georgia Aquarium, the Eugene Science Center, the Atlanta Center for the Visually Impaired, and Perkins School for the Blind.

The project will leverage existing educational ocean datasets from the NSF-funded Ocean Observatories Initiative to produce and evaluate the feasibility of using integrated auditory displays to communicate tiered learning objectives of oceanographic principles. Integrated auditory displays will each be comprised of a data sonification and a context-setting audio introduction that will help to make sure all users start with the same basic information about the phenomenon. The displays will be developed through a user-centered design process that will engage ocean science experts, visually impaired students and adults (and their teachers), and design-oriented undergraduate and graduate students. The project will support advocacy skills for inclusive design and will provide valuable training opportunities for graduate and undergraduate students in human-centered design and accessibility. The project will have foundational utility in auditory display, STEM education, human-computer interaction, and other disciplines, contributing new strategies for representing quantitative information that can be applied across STEM disciplines that use similar visual data displays. The project will generate publicly accessible resources to advance studies of inclusive approaches on motivating learners with and without disabilities to learn more about and consider careers in STEM.

This Pilots and Feasibility Studies project is supported by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Amy Bower Carrie Bruce Jon Bellona
resource project Exhibitions
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.

This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Kevin Ponto David Gagnon
resource project Exhibitions
The science museum field is only starting to look at ways of providing visitors with opportunities for the authentic observation of complex, real-time biological phenomenon. The project will develop and research a microscope-based exhibit with pedagogical scaffolding (i.e., helpful prompts) that responds to visitors' changing views as they explore live samples and biological processes. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. Scientific observation is a systematic, complex practice, critical in the biological sciences where investigation is heavily reliant on visual data. Using techniques and equipment similar to what scientists themselves use, the exhibit will enable visitors to see and explore the complex, dynamic visual evidence that scientists themselves see. The exhibit will use new and more affordable high-resolution imaging technology and image analysis software to make microscopic images of living organisms visible. Armed with "smart" (i.e., computer-assisted) pedagogical scaffolding that supports inquiry, the project will develop exhibits that help informal learners bridge the gap between everyday observation and authentic scientific observation. The platform will incorporate strategies grounded in prior work on learning through observation that will be applicable to a range of biological content and live specimens. The project platform will be designed for use to a variety of informal science learning environments, including nature centers and mobile laboratories as well as interactive science centers. The project platform itself, including the microscope, related imaging, and learning technologies will be relatively inexpensive, bring it within reach of small science museum and schools. The exhibit will directly engage thousands of learners who visit the Exploratorium and will reach underserved audiences through partnerships with BioBus, a mobile unit that serves the New York City area, and the Noyo Center of Marine Science, a science museum that serves rural areas in Northern California.

The project will move beyond simulation and modeling of complex visual phenomena and provide learners with experiences using real visual evidence that can deeply engage them with the content and practice of biological science. By grounding the work in prior theoretical and empirical findings, project research will refine and broaden understanding of scaffolding strategies and their effect on informal science learning at exhibits. Project research will investigate how the project supports learners (1) asking productive questions (i.e., those answerable through observations) that are meaningful to them, (2) interpreting what they see, and (3) connecting their observations to biological concepts to build a more coherent understanding of the content and practice of biological disciplines. A series of comparative studies across and within venues, specimens, and content will assess engagement and scaffolding strategies, with a particular focus on appropriately integrating computational imaging techniques in a way that is responsive to the interests and needs of different venues' audiences. Project research will contribute important knowledge on ways to support informal learners who are engaged in authentic observation of biological phenomenon. Project research findings and technology resources will be widely shared with informal STEM researchers and practitioners concerned with engaging the public in current research in biology, as well as those interested in supporting observation in other disciplines (e.g., meteorology, ocean science, environmental science) that rely on an evidence base of live, dynamic, complex imagery.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kristina Yu Daniel Fletcher Joyce Ma
resource project Exhibitions
There is a dearth of prominent STEM role models for underrepresented populations. For example, according to a 2017 survey, only 3.1% of physicists in the United States are Black, only 2.1% are Hispanic, and only 0.5% are Native American. The project will help bridge these gaps by developing exhibits that include simulations of historical scientific experiments enacted by little-known scientists of color, virtual reality encounters that immerse participants in the scientists' discovery process, and other content that allows visitors to interact with the exhibits and explore the exhibits' themes. The project will develop transportable, interactive exhibits focusing on light: how we perceive light, sources of light from light bulbs to stars, uses of real and artificial light in human endeavors, and past and current STEM innovators whose work helps us understand, create, and harness light now. The exhibits will be developed in three stages, each exploring a characteristic of light (Color, Energy, or Time). Each theme will be explored via multiple deliveries: short documentary and animated films, virtual reality experiences, interactive "photobooths," and technology-based inquiry activities. The exhibit components will be copied at seven additional sites, which will host the exhibits for their audiences, and the project's digital assets will enable other STEM learning organizations to duplicate the exhibits. The exhibits will be designed to address common gaps in understanding, among adults as well as younger learners, about light. What light really is and does, in scientific terms, is one type of hidden story these exhibits will convey to general audiences. Two other types of science stories the exhibits will tell: how contemporary research related to light, particularly in astrophysics, is unveiling the hidden stories of our universe; and hidden stories of STEM innovators, past and present, women and men, from diverse backgrounds. These stories will provide needed role models for the adolescent learners, helping them learn complex STEM content while showing them how scientific research is conducted and the diverse community of people who can contribute to STEM innovations and discoveries.

The project deliverables will be designed to present complex physics content through coherent, immersive, and embodied learning experiences that have been demonstrated to promote engagement and deeper learning. The project will research whether participants, through interacting with these exhibits, can begin to integrate discrete ideas and make connections with complex scientific content that would be difficult without technology support. For example, students and other novices often lack the expertise necessary to make distinctions between what is needed and what is extra within scientific problems. The proposed study follows a Design-Based Research (DBR) approach characterized by iterative cycles of data collection, analysis, and reflection to inform the design of educational innovations and advance educational theory. Project research includes conceiving, building, and testing iterative phases, which will enable the project to capture the complexity of learning and engagement in informal learning settings. Research participants will complete a range of research activities, including focus group interviews, observation, and pre-post assessment of science content knowledge and dispositions.

By showcasing such role models and informing about related STEM content, this project will widen perspectives of audiences in informal learning settings, particularly adolescents from groups underrepresented in STEM fields. Research findings and methodologies will be shared widely in the informal STEM learning community, building the field's knowledge of effective ways to broaden participation in informal science learning, and thus increase broaden participation in and preparation for the STEM-based workforce.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Todd Boyette Jill Hamm Janice Anderson Crystal Harden
resource project Exhibitions
In March of 2016, a total solar eclipse occurred in the southwestern pacific; and in August of 2017, a total solar eclipse occurred across a broad swath of the United States. The Exploratorium launched a 2.5
year public education program—Navigating the
 Path of Totality—that used these two
 total solar eclipses as platforms for
 sparking public engagement and learning 
about the Sun, heliophysics, and the STEM
 content related to both. These sequential
 eclipses provided an unprecedented
 opportunity to build and scaffold public
 engagement and education. Our strategy was to 
start the public engagement process with the 
2016 eclipse, nurture that engagement with
 resources, activities and outreach during the 17
 months between the eclipses, so that audiences (especially in the U.S., where totality was visible in multiple areas across the country) would be excited, actively interested, and prepared for deeper engagement during the 2017 eclipse. For the August 2017 eclipse, the Exploratorium produced live telescope and program feeds from Madras, OR and Casper, WY. The Exploratorium worked with NASA to leverage what was a once-in-a-lifetime experience for millions to bring heliophysics information and research to students, educators, and the public at large through a variety of learning experiences and platforms.

The core of this project was live broadcasts/webcasts of each eclipse. To accomplish these objectives, the Exploratorium produced and disseminate live feeds of telescope-only images (no commentary) of each eclipse originating them from remote locations; produce and disseminate from the field live hosted broadcasts/webcasts of each eclipse using these telescope images; design and launch websites, apps, videos, educator resources, and shareable online materials for each eclipse; design and deliver eclipse themed video installations for our Webcast studio and Observatory gallery in the months that lead up to each eclipse and a public program during each eclipse; and conduct a formative and summative evaluation of the project. 


These broadcasts/webcasts and pre-produced videos provide the backbone upon which complementary educational resources and activities can be built and delivered. Programs and videos were produced in English and Spanish languages. As a freely available resource, the broadcasts/webcasts also provide the baseline content for hundreds if not thousands of educational efforts provided by other science-rich institutions, schools, community-based organizations, and venues. Platforms such as NASA TV and NASA website, broadcast and online media outlets such as ABC, NBC, CBS, CNN, MSNBC and PBS, as well as hundreds of science institutions and thousands of classrooms streamed the Exploratorium eclipse broadcasts as part of their own educational programming, reaching 63M people. These live broadcasts were relied upon educational infrastructure during total solar eclipses for institutions and individuals on the path and off the path alike.
DATE: -
TEAM MEMBERS: Robert Semper Robyn Higdon Nicole Minor
resource project Exhibitions
The four New England museums of the Environmental Exhibit Lab (EEC) set out in the Fall of 2011 to create a replicable model of collaborative professional development for small museums. At small institutions, impending deadlines, budget and staffing limitations, and professional isolation all too often get in the way of true innovation. The goal of Exhibit Lab was to help staff who, though conversant with current museum theory, sometimes struggle to apply that theory to their daily work, or to disseminate these ideas through an institution. Exhibit Lab relied on a carefully crafted mix of meetings, workshops and staff exchanges, a combination of outside experts and peer-to-peer mentoring, to foster a community of practitioners, engaged in collaborative learning-by-doing. In short, the participants created a "virtual department" in which we came to rely as quickly on our peers in a partner museum as quickly as we would to a co-worker down the hall had we worked in a larger museum. The Exhibit Lab project focused on the work of the Exhibit and Program/Education staffs, but we feel that the project model holds lessons for other museum departments, and for museums outside the Children's and Science museum sphere.
DATE: -
TEAM MEMBERS: Worcester Natural History Society dba EcoTarium Betsy Loring Alexander Goldowsky Suzanne Olson Chris Sullivan Phelan Fretz Julie Silverman Neil Gordon Denise LeBlanc Joseph P. Cox