Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
Vassar College is conducting a 2.5-day conference, as well as pre- and post-conference activities, that convenes a multi-disciplinary, multi-institutional (USA and international) team to conceptualize and plan various research, education and outreach activities in informal learning, focusing on the seminal concept of tensegrity and its applications in many fields of science and mathematics. Tensegrity is the characteristic property of a stable three-dimensional structure consisting of members under tension that are contiguous and members under compression that are not.

The conference will bring together researchers and practitioners in informal learning and researchers in the various disciplines that embrace tensegrity (mathematics, engineering, biology, architecture, and art) to explore the potential that tensegrity has to engage the public in informal settings, especially through direct engagement in creating such structures. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

To date there have been no sustained informal educational projects and research around the topic of tensegrity. However, there is considerable related work on learning through "making and tinkering" upon which the participants will adapt and expand. The intended conference outcomes are to produce prototypes of activities, a research agenda, and lines of development with the potential to engage the wider public. A key priority of the gathering is the development of new partnerships between researchers and creators of tensegrity systems and the informal learning professionals. The long-term project hypothesis is that children and adults can engage with tensegrity through tinkering with materials and becoming familiar with a growing set of basic structures and their applications. The activities will include evaluation of the conference and a social network analysis of the collaborations that result.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: John McCleary
resource project Summer and Extended Camps
This NSF INCLUDES Design and Development Launch Pilot is to expand the Navajo Nation Math Circle model to other sites, and to develop and launch a network of math circles based on the NNMC model. The Navajo Nation Math Circle model is a novel approach to broadening the participation of indigenous peoples in mathematics that, ultimately, seeks to improve American Indian students' attitudes towards mathematics, persistence with challenging problems, and grades in math courses. Navajo Nation Math Circles bring teachers, students, and mathematicians together to work collaboratively on challenging, but meaningful and fun, math problems. Through this NSF INCLUDES project, additional math circles across the Navajo Nation will be launched and a mirror site in Washington State serving additional tribes (such as Puyallup, Muckleshoot, Tulalip, and Stillaguamish) will be established.

Originating approximately a century ago in Eastern Europe as a means to engage students in mathematical thinking, math circles bring teachers, students, and math professionals together to work collaboratively on challenging, but relevant and interesting, math problems. Navajo Nation Math Circles, established math circles in various Navajo Nation communities, are the foundation of this INCLUDES project. One goal of this effort is to launch a network with the capacity to support the replication and adaption of math circles in multiple sites as an innovative strategy for encouraging indigenous math engagement through culturally enriched open-ended group math explorations. In addition, the Navajo Nation Math Circle model will be expanded to new math circles in the Navajo Nation, as well as in Washington State to serve additional tribes. Cells in the network will implement key elements of the Navajo Nation Math Circle model, adapting them to their particular contexts. Such elements include facilitation of open-ended group math explorations, incorporating indigenous knowledge systems; a Mathematical Visitor Program sending mathematicians to schools to work with students and their teachers; inclusion of mathematics in public festivals to increase community mathematical awareness; a two-week summer math camp for students; and teacher development opportunities ranging from workshops to immersion experiences to a mentoring program pairing teachers with mathematicians.
DATE: -
TEAM MEMBERS: David Auckly Henry Fowler Jayadev Athreya
resource evaluation Public Programs
The Art of Science Learning, Phase 2 was an NSF-funded research and development project to investigate the value of incorporating arts-based learning techniques in STEM-related group innovation processes. The project team created a new, arts-infused innovation curriculum in consultation with leading national practitioners in the arts, creativity, and innovation, then deployed that curriculum in “innovation incubators” in San Diego, Chicago, and Worcester (Mass.) in partnership with informal STEM institutions in those cities. At each incubator, diverse members of the public (from high school
DATE:
TEAM MEMBERS: Peter Linett Steve Shewfelt Nicole Baltazar Nnenna Okeke Dreolin Fleisher Eric LaPlant Madeline Smith Chloe Chittick Patton Sarah Lee Harvey Seifter
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The National Association of Math Circles (NAMC) will convene the Math Circle-Mentor and Partnership (MC-MAP) Workshop in late 2016. The proposed MC-MAP workshop will build the field's understanding of the training content and mechanisms that enhance the knowledge and skill development of participants in Math Circles. The workshop will bring mentors from experienced Math Circle leaders together with novice Math Circle leaders to develop the expertise of the notice leaders and their group to develop their expertise in facilitating math circle activities and in organizing related events. The approximately 180 Math Circles currently operating across the nation enlist mathematics professionals to share their passion for mathematics with K-12 students, teachers, and the general public in contexts that emphasize exploration, problem solving and discovery. This initial conference and Math Circle trainings informed by this conference will help build a community of practice around Math Circles through which novice and existing leaders are connected, encouraged and inspired.

The MC-MAP workshop will include structured planning as well as guided observation and structured debriefing of a demonstration Math Circle sessions. The workshop design will be grounded in research related to effective adult learning and to discovery-based mathematics. The workshop will serve as a training prototype that will assist the National Association of Math Circles to identify effective training formats and materials for both experienced and novice Math Circle leaders. Pre- and post- conference surveys of Math Circle leaders will produce data to be used in planning and designing future trainings. The NAMC will share key findings from the workshop evaluation and workshop resources not only with its membership, but also with other mathematics K-12 outreach programs. Workshop materials will address recruiting and serving diverse participants in Math Circles, including girls and women, persons with disabilities, students from varied socioeconomic backgrounds and underrepresented minorities in STEM.
DATE: -
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This proposed effort embraces broad participation by the three Ute tribes, History Colorado, and scientists in the field of archaeology to investigate and integrate traditional ecological knowledge and contemporary Western science. The project will preserve knowledge from the Ute peoples of Colorado and Utah, including traditional technology, ethnobotany, engineering and math. Results from this project will inform educational efforts in similar communities.

This project will build on the long-standing collaborations between History Colorado (HC), the Southern Ute Indian Tribe, Ute Mountain Ute Tribe and Ute Indian Tribe, Uintah & Ouray Reservation, and the Dominguez Archaeological Research Group DARG). HC will implement and evaluate a regional informal learning collaboration focused on Ute traditional and contemporary STEM knowledge serving over 128,000 learners through tribal programs, local history museums and educational networks. This project will advance the understanding of integrated knowledge and the role of Ute people as STEM learners and practitioners. This Informal Science Learning project will increase lifelong STEM learning in rural communities and create a replicable model for collaboration among tribes, history museums, and scientists.
DATE: -
TEAM MEMBERS: Liz Cook Sheila Goff Shannon Voirol JJ Rutherford
resource research Media and Technology
The Exploratorium explainer program is not only important to the young people involved, but is an integral part of the museum culture. This initiative that started to help the youth of our community has blossomed into a program that has been very helpful to the science centre. In fact, the institution would not be complete without the fresh energy of the explainers. They help the Exploratorium to continue to give the real pear to its public.
DATE:
TEAM MEMBERS: Sebastian Martin Modesto Tamez
resource research Public Programs
Research on mathematical reasoning and learning has long been a central part of the classroom and formal education literature (e.g., National Research Council, 2001, 2005). However, much less attention has been paid to how children and adults engage with and learn about math outside of school, including everyday settings and designed informal learning environments, such as interactive math exhibits in science centers. With the growing recognition of the importance of informal STEM education (National Research Council, 2009, 2015), researchers, educators, and policymakers are paying more
DATE:
resource research Public Programs
Making, tinkering, and other informal design and engineering experiences offer rich opportunities to engage children and adults in mathematics and build mathematical skills, knowledge, and interests. But how can educators successfully integrate mathematics into these experiences? One approach to answering this question is to better understand how children and adults engage with and think about mathematics outside of school, in every day and informal learning environments. As part of the NSF-funded Math in the Making project, Pattison, Rubin, and Wright (2016) synthesized the research on
DATE:
resource research Public Programs
Although there is a growing body of research on mathematics in informal learning environments (Pattison, Rubin, & Wright, 2016; Rubin, Garibay, & Pattison, 2016), less has been done to understand how math can be integrated into other informal STEM education settings or topics, and how this integration might engage those who do not already have positive attitudes about math. Over the last decade there has been a proliferation of out-of-school environments that foster building, making, tinkering, and design activities (Bevan, Gutwill, Petrich, & Wilkinson, 2015; Vossoughi, Escudé, Kong, & Hooper
DATE:
resource project Public Programs
The Balboa Park Cultural Partnership, in collaboration with several informal science education and other cultural and business organizations in San Diego, Chicago, and Worcester, MA are implementing a research and development project that investigates a range of possible approaches for stimulating the development of 21st Century creativity skills and innovative processes at the interface between informal STEM learning and methods for creative thinking. The goal of the research is to advance understanding of the potential impacts of creative thinking methods on the public's understanding of and engagement with STEM, with a focus on 21st Century workforce skills of teens and adults. The goal of the project's development activities is to experiment with a variety of "innovation incubator" models in cities around the country. Modeled on business "incubators" or "accelerators" that are designed to foster and accelerate innovation and creativity, these STEM incubators generate collaborations of different professionals and the public around STEM education and other STEM-related topics of local interest that can be explored with the help of creative learning methodologies such as innovative methods to generate creative ideas, ideas for transforming one STEM idea to others, drawing on visual and graphical ideas, improvisation, narrative writing, and the process of using innovative visual displays of information for creating visual roadmaps. Hosting the project's incubators are the Balboa Park Cultural Partnership (San Diego), the Museum of Science and Industry (Chicago) and the EcoTarium (Worcester, MA). National partners are the Association of Science-Technology Centers, the American Association for the Advancement of Science, and the Americans for the Arts. Activities will include: the formation and collaborative processes of three incubator sites, a research study, the development of a creative thinking curriculum infused into science education, professional development based on the curriculum, public engagement events and exhibits, a project website and tools for social networking, and project evaluation. A national advisory council includes professionals in education, science, creativity, and business.
DATE: -
resource research Professional Development, Conferences, and Networks
This article from the Center for Advancement of Informal Science Education (CAISE) offers an introduction to the field of informal STEM education (ISE). It provides a brief survey of informal STEM education projects related to biology and discusses opportunities for scientists to become involved.
DATE:
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project, "STEM Learning in Libraries: A National Conference on Needs, Opportunities, and Future Directions," brings together libraries, informal educators and STEM education and research organizations to discuss the role of libraries in STEM out-of-school time (OST) education, share existing programs, define library needs, and develop a research and evaluation agenda. To date, there has not been systematic exploration of the ways that STEM programming occurs in libraries nor of their effectiveness when they do happen. This will be the first conference of its kind and stands to have a high degree of visibility and the potential for broad impact. Principal Investigator Paul Dusenbery, Director of the National Center for Interactive Learning (NCIL) and Executive Director of Space Science Institute, will lead an experienced project team that includes Co-PI Keliann LaConte, Lunar Planetary Institute; Susan Brandehoff, Public Programs Office, American Library Association; and Anne Holland, NCIL. The conference sessions will be organized around four strands: (1) showcasing successful STEM programs and reviewing research and evaluation results on informal STEM learning in public libraries; (2) examining the current needs, barriers, and opportunities of public libraries; (3) elucidating the possible future roles of public libraries in the 21st Century; and (4) identifying promising practices and strategies. Beginning with core members comprised of the project team and organizing committees, the project will create a Leadership Forum for library directors, library science educators, and policy makers, as well as STEM professionals and educators. Conference results will be disseminated through a wide variety of organizational websites: NCIL, ALA, LPI, the conference website, the STAR_Net online community, and CAISE. In 2010, there were nearly 1.6 billion visits to 17,000 public libraries. Library audiences are true reflections of the nation's population - they serve all races, ages, economic backgrounds, and regions of the country. The STEM Learning in Libraries conference will give public libraries, STEM organizations, informal educators, and funders an opportunity to begin a dialogue with implications for profoundly impacting the attitudes of millions of Americans toward STEM topics.
DATE: -