Skip to main content

Community Repository Search Results

resource project Conferences
This conference project will bring together Black children's media creators with climate scientists and developmental psychologists to promote climate science story making that speak to the concerns, circumstances, and experiences of Black audiences.
DATE: -
TEAM MEMBERS: Ed Greene
resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a mobile app to guide families through sequenced sets of videos and hands-on activities, building on the popular PBS KIDS series Work It Out Wombats!
DATE: -
TEAM MEMBERS: Marisa Wolsky Janna Kook Jessica Andrews
resource project Informal/Formal Connections
This project addresses the urgent need for the development of equitable approaches to early childhood STEM education that honor the diverse cultural practices through which caregivers (such as parents, grandparents, and other adults in children’s lives) support young children’s learning. Recent studies suggest that both formal and informal educational institutions often privilege Western or Eurocentric parenting practices, neglecting many families’ cultural practices and ways of learning. This study will bring together a group of caregivers, pre-K educators, researchers, and museum staff to investigate how families with young children negotiate among their own cultural practices and the types of STEM learning they encounter in museums, schools, and other community settings. The project team will work together to identify opportunities for informal STEM learning institutions to strengthen their roles as places that can bridge home and school environments and open up new possibilities for building on caregivers’ knowledge and cultural practices within this larger community context. The project will directly benefit the 330 families whose children attend the partnering public school each year, as well as hundreds of families who attend family events at the New York Hall of Science annually. Finally, by considering nuances in caregivers’ perspectives and experiences based on multiple facets of their identities, the research will reveal how structures in educational settings might be changed to become more inclusive and culturally responsive for the broadest possible audience of families.

This Pilots and Feasibility project seeks to 1) conduct exploratory research to understand caregiver engagement, defined as caregivers’ expectations, values, and practices related to their roles in children’s learning, from the perspectives of caregivers, and 2) engage in co-design efforts with caregivers and pre-K educators to explore how the museum can be leveraged as a material and creative resource to support caregiver engagement in STEM learning. This work will be carried out in the context of a long-term partnership between the New York Hall of Science and the New York City Department of Education. Methods will include in-depth interviews with caregivers, using narrative and intersectional research methods to extend existing studies on caregiver engagement in informal STEM learning, while taking into account multiple aspects of families’ social and cultural identities. This work will be carried out in Corona — a neighborhood in Queens, NY, largely made up of low-income and first-generation immigrant families. The project team will collaboratively interpret findings and engage in the initial phases of co-design work, which will include: reflecting on the systems currently in place to support caregivers’ involvement in children’s learning across settings; collaboratively generating new, culturally responsive strategies for leveraging the museum as a material and creative resource for families with young children; and choosing promising directions for further development and testing. Products from this work will include directions for new caregiver engagement initiatives that can be developed and refined as the partnership continues, and strategies for supporting equitable participation by caregivers, pre-K educators, and other community stakeholders in future research-practice partnerships.
DATE: -
TEAM MEMBERS: Susan Letourneau Delia Meza Jasmine Maldonado
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

It has been well documented that under-resourced Latinx communities face persistent barriers to accessing quality STEM education and STEM careers, particularly in the field of engineering. For young children and their families from these communities, the development of executive function skills offers promising pathways to support educational success and prepare children to engage with STEM practices and content. Executive function skills, such as focusing attention, retaining information, and managing emotions are critical for children’s development and long-term success, and have been identified as central to engagement with STEM practices and content, whether in or out of school. However, much of the work on development of executive function skills to date has been conducted with White, middle-class children and has largely ignored the knowledge, values, or perspectives of other communities, including Latinx families. Similar gaps also exist in attention to culturally responsive approaches to using family-based STEM activities to support executive function skills. Taken together, there is a critical need to work with Latinx communities to re-imagine the intersection of STEM learning and executive function skills using equity-based frameworks. This Pilot and Feasibility project will develop and test a new participatory, dialogic method that leverages informal family engineering activities to support the development of executive function skills for preschool-age children from Latinx families. The combination of this proposal’s unique engagement of parents as research partners with the study of engineering and executive functions could lay the foundation for a promising program of future equity-focused research.

Three research questions will guide the study: 1) What knowledge, assets, and practices already exist within Latinx families related to these executive function skills? 2) What aspects of executive function skills can be supported through informal family engineering activities? and 3) What are promising design strategies for adapting informal family engineering activities to highlight family assets and support executive function skills for young children? To address these questions, the project team will engage Latinx parents in a dialogue series in which parents are central collaborators, sharing their in-depth perspectives and partnering with researchers to develop conceptual frameworks and new approaches. Data generated through these ongoing discussions will be analyzed using (a) qualitative, participatory approaches, including iterative co-development and refinement of emergent themes with parents, (b) detailed inductive coding of parent dialogue group discussions using grounded theory techniques, and (c) retrospective analysis at the end of the project. The parent dialogue series will be supported by a systematic literature review examining the intersections between engineering design, executive function, and the strengths and assets within Latinx families. The results of the exploratory research will include a (1) conceptual framework co-developed with parents that highlights promising opportunities and design strategies for using family engineering design activities to support executive function skills for preschool-age children from Latinx families and (2) research agenda outlining questions and priorities for future work that reflect the goals and interests of this community. Aligned with project’s equity approach, the team will work collaboratively with project partners and families for dissemination, focusing on amplifying community voices, sharing challenges and successes, and supporting improvements in the local community. Results will also be broadly shared with educators and researchers to advance knowledge and promote new equitable approaches to collaborating with parents from Latinx communities.

This Pilots and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Smirla Ramos-Montañez Scott Pattison Shauna Tominey
resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a series of mobile apps to guide families through sequenced sets of videos and hands-on activities. To support families at home it would also develop a new library model to build librarians' computational thinking content knowledge and self-efficacy so they can support parents' efforts with their children. Computational thinking is a an increasingly critical skill for learning and success in the workforce. It includes the ability to identify problems, brainstorm and generate solutions and processes that can be communicated and followed by computers or humans. There are few projects that introduce computational thinking to young children. Very little research has been done on the ways that parents can facilitate children's engagement in CT skills. And developing a model that trains and supports librarians to become virtual coaches of parents as they engage with their children in CT, will leverage and build the expertise of librarians. The project's target audience includes parents and children living in rural areas where access to CT learning may be very limited. Project partners include the EDC, a major research organization, the American Library Association, and BUILD, a national association that promotes collaborations across library, kindergarten readiness, and public media programming.

The formative research study asks: 1) What supports do parents of preschoolers in rural communities need in order to effectively engage in CT with their children at home? and 2) How can libraries in rural communities support joint CT exploration in family homes? The summative research study asks: 3) how can an intervention that combines media resources, mobile technology, and library supports foster sustained joint parent/child engagement and positive attitudes around CT? Researchers will develop a parent survey, adapting several scales from previously developed instruments that ask parents to report on children's use of CT-related vocabulary and CT-related attitudes and dispositions. Survey scales will assess librarians' attitudes towards CT, as well as their self-efficacy in supporting parents in CT in a virtual environment. During the formative study, EDC will pilot-test survey scales with 30 parents and 6 librarians in rural MS and KY. Analyses will be primarily qualitative and will be geared toward producing rapid feedback for the development team. Quantitative analyses will be used on parent app use, using both time query and back-end data, exploring factors associated with time spent using apps. The summative study will evaluate how the new media resources and mobile technology, in combination with the library virtual implementation model, support families' joint engagement with CT, and positive attitudes around CT. The researchers will recruit 125 low-income families with 4- to 5-year-old children in rural MS and KY to participate in the study. They will randomly assign families within each library to the full intervention condition, including media resources, mobile technology, and library support delivered through the virtual implementation model, or the media and mobile-technology-only condition. This design will allow researchers to understand more fully the additional benefit of library support for rural families' sustained engagement, and conversely, see the comparative impact of a media- and mobile-technology only intervention, given that some families might not be able to access virtual or physical library support.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne Jessica Andrews Janna Kook
resource project Exhibitions
A long history of research suggests that early informal STEM learning experiences such as block play, puzzles, visiting zoos and science museums can build a strong foundation for STEM learning and which leads to later STEM success. Yet, children from low-income and historically underserved communities have less access to these opportunities due to scarce resources and barriers to access such as transportation and cost. To address these challenges, this project will endeavor to infuse public urban spaces such as local parks, bus-stops, and grocery stores with playful and engaging informal STEM learning opportunities in low-income Latinx neighborhoods as a strategy for understanding how public spaces, when co-designed with community partners and informed by the science of learning, can foster rich, informal STEM learning experiences for young children in neighborhood places where families naturally spend time. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Using techniques of Community-Based, Participatory Design Research, researchers will collaborate closely with community families and partners in Santa Ana, California to achieve three aims: 1) Co-design a series of outdoor Playful Learning Landscape (PLL) exhibit installations with community partners that reflect the goals, values, and cultural capital of the Latino community. 2) Explore how caregivers and their children experience PLL exhibit installations and examine the development and changes in: a) caregiver-child STEM conversation and interactions, and b) caregiver attitudes about the importance of informal STEM learning and their beliefs about their role in facilitating STEM learning. 3) Leverage existing data from county partners to examine the potential effects of having multiple PLL installations within a specific neighborhood on promoting STEM learning and development across an array of cognitive and socio-emotional outcomes in early-childhood. This project will advance current knowledge on informal STEM learning by demonstrating new ways to understand the cultural assets that Latinx families bring to learning contexts, showing how the unique assets and needs of a local community can be incorporated into public infrastructure, and documenting the STEM-related learning experiences and interactions that occur in these settings. Due to a partnership with the Orange County Children and Families Commission, which collects data on child learning and development on every child in the county, researchers will examine the longitudinal impacts of a cluster of playful STEM-learning exhibit installations in a single neighborhood on children's developmental outcomes compared to matched neighborhoods without access to these installations. By leveraging everyday routines to promote playful STEM learning and caregiver-child STEM-related interactions, this project will: 1) empower caregivers to build a STEM learning foundation for children during early childhood; and 2) serve as a model for how cities can be re-designed to enhance ubiquitous STEM learning across public spaces, with the cultural capital of local families and children at the center of urban design and revitalization.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Andres Bustamante Kathy Hirsh-Pasek June Ahn
resource project Informal/Formal Connections
Parents and adult caregivers play a significant role in young children's understanding of (and participation in) science, technology, engineering, and mathematics (STEM). Research suggests that early engagement with STEM can have a profound impact on children's use of STEM process skills such as exploration, observation, and problem-solving, as well as future academic success. An immediate yet ongoing challenge facing informal STEM learning providers is to understand how limited resources can be used to support effective STEM learning opportunities and experiences for all children and families. Through a collaboration between researchers, Head Start, two science centers (one rural, one urban), and educators, this project aims to foster STEM access and engagement with specific attention to young children and their caregivers. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Pilot and Feasibility study will apply an experimental, mixed-methods design to examine parent/caregiver and child (ages 4-5) interactions before, during, and after informal STEM experiences to identify which factors influence children's transfer of learning STEM process skills across multiple informal contexts. Research results will lay the foundation for a future longitudinal study. The project team will ask: (1) What types of parent/caregiver-child engagement at the science center are most predictive of children's application of STEM process skills in subsequent problem-solving tasks and school readiness? (2) How do variations in parent/caregiver-child conversational strategies during the science center visit influence children's memory and learning? and (3) How can informal educators best support Head Start family engagement and children's emerging STEM knowledge? This study will collect data on 240, 4-5-year-old children, with their caregivers, in two different science centers that serve a largely rural and largely urban population. Data sources will include video/audio of caregiver-child interactions at the science centers and at home, as well as children's recall, engagement with a problem-solving task, and school readiness scores. Coding and analysis of the tasks during and after the science center visit will detail mechanisms underlying children's memory, learning, and application of STEM process skills that transfer to the problem-solving task. The project will be implemented by a research-practice partnership, leveraging the expertise of project partners and communities to ensure the use of culturally responsive research practices. This research has the potential to strategically impact how science centers and Head Start grantees work together on Family Engagement programming to achieve equitable STEM learning opportunities, broadening participation for low-income young children and their families.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michelle Kortenaar Jennifer Schwade Erin Jant Stacy Prinzing
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource project Exhibitions
This project responds to calls to increase children's exposure and engagement in STEM at an early age. With the rise of the maker-movement, the informal and formal education sectors have witnessed a dramatic expansion of maker and tinkering spaces, programs, and curricula. This has happened in part because of the potential benefits of tinkering experiences to promote access and equity in engineering education. To realize these benefits, it is necessary to continue to make and iterate design and facilitation approaches that can deepen early engagement in disciplinary practices of engineering and other STEM-relevant skills. This project will investigate how stories can be integrated into informal STEM learning experiences for young children and their families. Stories can be especially effective because they bridge the knowledge and experiences young children and their caregivers bring to tinkering as well as the conversations and hands-on activities that can extend that knowledge. In addition, a unique contribution of the project is to test the hypothesis that stories can also facilitate spatial reasoning, by encouraging children to think about the spatial properties of their emerging structures.

This project uses design-based research methods to advance knowledge and the evidence base for practices that engender story-based tinkering. Using conjecture mapping, the team will specify their initial ideas and how it will be evident that design/practices impact caregivers-child behaviors and learning outcomes. The team will consider the demographic characteristics, linguistic practices, and funds of knowledge of the participants to understand the design practices (resources, activities) being implemented and how they potentially facilitate learning. The outcome of each study/DBR cycle serves as inputs for questions and hypotheses in the next. A culturally diverse group of 300+ children ages 5 to 8 years old and their parents at Chicago Children's Museum's Tinkering Lab will participate in the study to examine the following key questions: (1) What design and facilitation approaches engage young children and their caregivers in creating their own engineering-rich tinkering stories? (2) How can museum exhibit design (e.g., models, interactive displays) and tinkering stories together engender spatial thinking, to further enrich early STEM learning opportunities? and (3) Do the tinkering stories children and their families tell support lasting STEM learning? As part of the overall iterative, design-based approach, the team will also field test the story-based tinkering approaches identified in the first cycles of DBR to be most promising.

This project will result in activities, exhibit components, and training resources that invite visitors' stories into open-ended problem-solving activities. It will advance understanding of mechanisms for encouraging engineering learning and spatial thinking through direct experience interacting with objects, and playful, scaffolded (guided) problem-solving activities.


This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Tsivia Cohen Kim Koin Natalie Bortoli Catherine Haden David Uttal Maria Marcus
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.

The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tricia Zucker