Skip to main content

Community Repository Search Results

resource project Media and Technology
The University of Montana will create “Transforming Spaces” to foster a more inclusive, culturally responsive space for Missoula’s urban Indian population and to better meet the community’s needs. The project will explore cross-cultural, collaborative approaches to STEM and Native Science. In collaboration with Montana’s tribal communities, the museum’s education team and advisory groups will design and implement hands-on activities that engage visitors with Native Science. The project will engage tribal role models and partner with tribal elders to create a library of videos for tribal partners, K–12 schools, and organizations. The project will offer teachers professional development designed to fulfill the statewide mandate of Indian Education for All. The exhibit will connect Native and non-Native museum visitors, close opportunity and achievement gaps, and ensure that all Missoula children feel a sense of belonging in museums, higher education, and STEM.
DATE: -
TEAM MEMBERS: Jessie Herbert-Meny
resource research Public Programs
Access & opportunity in STEM remain limited for youth from historically underrepresented backgrounds in the US & UK. We present findings grounded in Participatory Ethnographies into STEM pathways, highlighting how youth participate in ISL across time and settings in equitable and transformative ways, and practices that ISL practitioners engage in towards supporting pathway authoring. We take a pathways lens to highlight the multiple directions one may take through a particular ecology towards a wide range of outcomes beyond the STEM career, such as STEM agency and identities. Our study
DATE:
TEAM MEMBERS: Angela Calabrese Barton Louise Archer emily dawson Lynn Dierking Day Greenberg Sperla Godec Won Jung Kim Sinead Brien ReAnna Roby Uma Patel Ada Mau
resource project Public Programs
This 4-year project addresses fundamental equity issues in informal Science, Technology, Engineering and Mathematics (STEM) learning. Access to, and opportunities within informal STEM learning (ISL) remain limited for youth from historically underrepresented backgrounds in both the United States and the United Kingdom. However, there is evidence that ISL experiences can expand opportunities for youth learning and development in STEM, for instance, increase positive attitudes towards educational aspirations and future careers/pursuits, improve grades and test scores in school settings, and decrease disciplinary action and dropout rates. Through research and development, this project brings together researchers and practitioners to focus on the experiences, practices and tools that will support equitable youth pathways into STEM. Working across conceptual frameworks and ISL settings (e.g. science centers, community groups, zoos) and universities in four urban contexts in two different nations, the partnership will produce a coherent knowledge base that strengthens and expands research plus practice partnerships, builds capacity towards transformative research and development, and develops new models and tools in support of equitable pathways into STEM at a global level. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This Equity Pathways project responds to three challenges at the intersections of ISL research and practice in the United States and the United Kingdom: 1) lack of shared understanding of how youth from historically underrepresented backgrounds perceive and experience ISL opportunities across national contexts, and the practices and tools needed to support empowered movement through ISL; 2) limited shared understanding and evidence of core high-leverage practices that support such youth in progressing within and across ISL, and 3) limited understanding of how ISL might be equitable and transformative for such youth seeking to develop their own pathways into STEM. The major goal of this Partnership is for practitioners and researchers, working with youth through design-based implementation research, survey and critical ethnography, to develop new understandings of how and under what conditions they participate in ISL over time and across settings, and how they may connect these experiences towards pathways into STEM. The project will result in: 1) New understandings of ISL pathways that are equitable and transformative for youth from historically underrepresented backgrounds; 2) A set of high leverage practices and tools that support equitable and transformative informal science learning pathways (and the agency youth need to make their way through them); and 3) Strengthened and increased professional capacity to broaden participation among youth from historically underrepresented backgrounds in STEM through informal science learning. The project will be carried out by research + practice partnerships in 4 cities: London & Bristol, UK and Lansing, MI & Portland, OR, US, involving university researchers (University College London, Michigan State University, Oregon State University/Institute for Learning Innovation) practitioners in science museums (@Bristol Science Centre, Brent Lodge Park Animal Centre, Impressions 5, Oregon Museum of Science & Industry) and community-based centers (STEMettes, Knowle West Media Centre, Boys & Girls Clubs of Lansing, and Girls, Inc. of the Pacific Northwest).
DATE: -
resource project Public Programs
The U.S. Fish and Wildlife Service estimates that over 41 million people connect to nature through birding. Learning about birds in their natural environments offers opportunities for informal engagement in STEM by a broad range of individuals and groups. Birders often engage in scientific data gathering and analyses, geolocation and remote sensing, and phenology. They also become aware of ecological changes in bird habitats and migratory patterns due to rising temperatures and climate-related events like sea level rise, droughts, fires, and extreme weather. As such, the birding community is an ideal network to better understand and communicate the impacts of climatological changes on bird populations to the public. With this Innovations in Development project, the National Audubon Society will develop a new avian-focused, conservation and climate science community science curriculum for its Nature Centers, and test the effectiveness of the curriculum in educating the public about avian-focused conservation and climatological changes through guided nature experiences. Birding can serve as a pivotal entrée for young people into STEM fields and careers. Through its programs and partnerships, Audubon will leverage its national network to ensure that through this project a more diverse group of voices, particularly young adults and young adults of color, become involved in asking critical questions and developing solutions to address important environmental issues of the future. If successful, the broader impacts of this project on capacity building and public engagement could be far-reaching and long-lasting.

Over the three-year project duration, Audubon will bring educators from its nationwide network of thirty-four Nature Centers (including urban, suburban, and rural sites), together with over 510 young adults (ages 18-25) from its network of college campus chapters. An evidence-based curriculum and community science activities will be created and tested, relying heavily on a team of experts in ornithology, climate science research, STEM curriculum design, diversity, and informal science education. College students will advise on the design of content and activities to effectively interest and engage young adults. These students will be recruited from the new Audubon Campus Chapters Program, which includes 111 college and university campuses, among them, 19 Historically Black Colleges and Universities (HBCUs) and other Minority Serving Institutions (MSIs). The target population will be surveyed to also understand their current and likely participation in guided nature experiences and knowledge base in climate science. Current best practices in guided nature experiences will be gathered from across the Audubon network. The implementation efforts will result in a national STEM model, with train-the-trainer guides and workshops for informal science educators and public engagement opportunities focused on improving the state and condition of avian habitats and communities through climate science research. An external evaluation will be conducted and will include data collection methods such as retrospective pre and post surveys, semi-structured interviews, focus groups, and an embedded assessment to determine impact. The findings will be used to iteratively refine the evidence-based curriculum and measure STEM learning outcomes for the guided nature experience participants. The evaluation will address four areas: (1) fidelity of program implementation to promote accountability; (2) formative evaluation to understand needs and interests of young adults (ages 18-25), and subsequently inform program design; (3) outcomes for Center educators, to inform iterative improvement; and (4) outcomes for program participants, to contribute to the growing knowledge base on effective practices for STEM learning in informal settings.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Loren Smith Mark Scallion Heather Starck
resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Public Programs
General Summary

Because of the siloed nature of formal educational curricula, students who opt out of STEM coursework, for whatever reason, lose the opportunity to engage with the domain of science almost entirely, thereby closing the door to the STEM workforce pipeline. This disproportionately impacts students of color and women. This project advances an alliance that consists of a consortium of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and local businesses. The project built around this alliance will leverage interdisciplinary spaces in the curriculum, particularly the humanities and social sciences, across academic levels, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life. The PIs establish a physical Community STEM Center as an anchoring institution for STEM engagement. This Center will be situated within the community that the alliance serves, bringing STEM opportunities and engagement to students instead of asking them to come where STEM education is currently provided. The activities enacted through the Community STEM Center will focus on enduring problems experienced by the communities, where students, community residents, teachers, and experts from higher education, industry and other community-based entities can come together to work on understanding them and developing evidenced centered advocacy as a means for addressing them. To facilitate the work at the Community STEM Center, the project creates a Community Ambassadors Program (CAP), leveraging participation across alliance members in partnership with the community. This Design and Development Launch Pilot will cultivate the necessary knowledgebase to develop a scalable model for implementation across diverse urban communities.

Technical Summary

This Design and Development Launch Pilot focuses on shifting the narrative of STEM education away from a solitary focus on formalized educational experiences and targets STEM content. This project develops and facilitates a parallel set of activities designed to engage under-represented students in learning how and why STEM is relevant to their lives, and approached through new and non-traditional educational dimensions. The five main objectives of this proposed pilot are to: (1) Develop a pilot alliance of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and industry;(2)Establish a physical Community STEM Advocacy Center as an anchoring institution for change embedded within the community that the pilot alliance serves; (3) Leverage interdisciplinary spaces in curricula, across academic levels, particularly the humanities and social sciences, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life; (4) Create a Community Ambassadors Program (CAP), leveraging participation across higher education pilot alliance members in partnership with the community; and (5)Conduct an evaluation of project initiatives and research regarding the usability and feasibility of a systemic approach to developing community-based, interdisciplinary pathways to broaden STEM participation pathways. Efforts to examine the impact of this community-based, interdisciplinary approach concentrates on the proximal outcomes related to STEM interest, self-efficacy and identity. Data will be collected in pre/post format across our three constituent samples: 1) Community STEM Advocacy Center participants; 2) k-12 students; and, 3) postsecondary students. Analysis of data will be conducted through MANCOVAs to account for potential co-variation among construct scores. Qualitative data will also be collected to contextualize findings and enable the development of a rich case study. At least two observations will be conducted in the Community STEM Advocacy Center and the two classroom implementations to document engagement, participant interactions and level of STEM content.
DATE: -
TEAM MEMBERS: Kimberly Lawless Donald Wink Ludwig Carlos Nitsche Aixa Alfonso Jeremiah Abiade
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay
resource project Public Programs
A public event series, “Ecohumanities for Cities in Crisis,” will bring humanities scholars and the public together in Miami, FL to discuss the tension between humans and nature over hundreds of years. Miami is on the verge of an environmental crisis from a warming planet and rising seas. As the region grapples with policy and science issues, humanities scholars have a unique role to play. The project will frame humanistic discussion about urban environments, risk, and resilience. The centerpiece is a public forum in March 2016 which includes a plenary of scholars from diverse humanities disciplines, a walking tour, and a panel on diversity and justice in environmental advocacy. There will be five subsequent public programs through the Fall 2016, an on online archive of all events, professional development activities for high school teachers, a graduate public environmental history course, and a curated museum exhibit.
DATE: -
TEAM MEMBERS: April Merleaux
resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Media and Technology
The scientific community is challenged by the need to reach out to students who have traditionally not been attracted to engineering and the sciences. This project would provide a link between the University of Michigan and the teachers and students of secondary education in the State of Michigan with an initial emphasis on southeast Michigan, through the creation of a range of computer services which will provide interactive access to current weather and climate change information. Taking advantage of a unique computer network capacity within the State of Michigan named MichNet which provides local phone ports in virtually every major city in the state, and the resources available to the university community via the University Corporation for Atmospheric Research (UCAR) UNIDATA program, this project would provide secondary schools with access to a state-of-the-art interactive weather information system. The real-time data available via the system, supplemented by interactive computer modules designed in collaboration with earth science teachers, will provide animated background information on a range of climate and weather related topics. While the principal objective of this project will be to provide educationally stimulating interactive computer systems and electronic weather and climate modules for application in inner city Detroit and its environs, the unique nature of the available computer networking will allow virtually every school system in the state to have access. Subsequently successful completion of this project could eventually make the same systems available to other cities and states.
DATE: -
TEAM MEMBERS: Perry Samson