Skip to main content

Community Repository Search Results

resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource evaluation Public Programs
The independent evaluators at Knight Williams Inc. developed a front-end survey to gather background and baseline information about the 16 partner organizations selected to conduct outreach programs as part of SciGirls CONNECT2. The goal was for two people from each partner organization to complete the online survey about their background and prior use of the SciGirls Seven and related strategies. A total of 30 partner representatives completed the survey by the requested deadline, resulting in a response rate of 94%. The majority identified as program leaders, with smaller groups saying they
DATE:
resource research Public Programs
Informal science learning (ISL) organizations that are successful at providing meaningful science, technology, engineering, arts, and mathematics (STEAM) experiences for Latino children, youth, and their families share some common traits. They have leaders and staff who believe in the importance of developing culturally relevant models and frameworks that meet the needs and acknowledge the legacy of STEAM in Latino communities. Such organizations are willing to take risks to create experiences that are culturally meaningful, garner funding and implement programs by working closely with their
DATE:
TEAM MEMBERS: Cheryl Juarez Verónika Núñez Exploratorium
resource project Public Programs
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez
resource research Media and Technology
Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science
DATE:
TEAM MEMBERS: emily dawson
resource project Public Programs
This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of Science, Technology, Engineering, and Mathematics (STEM) learning in informal environments. Roughly one million refugees resettled in the United States in the past decade, many of whom are school-aged youth. During secondary school, resettled refugee youth are often still developing English language literacy and STEM skills needed for successful postsecondary experiences in the United States. At the same time, these youth bring rich cultural and linguistic resources that they can use as an asset as they grow their STEM skill sets, prepare for future success, and make positive impacts on U.S. society. To promote these assets and engage youth in developing STEM literacy, this after-school program engages these youth in critical STEM literacy development. The project focuses on STEM learning, specifically the relationship between human life and climate, as well as developing youths' STEM identities and agency.

The project will develop and implement a community-based afterschool program that provides resettled Burmese refugee youth with STEM learning experiences. By drawing upon youths' experiences, the program will engage youth in learning about climate science and developing digital stories to communicate with broader audiences. To do so, the team will implement a program that builds on principles of responsive teaching, funds of knowledge, and English literacy development in authentic meaning-making contexts. The project will examine how youth expand their STEM knowledge, develop STEM identities and agency, and develop their expertise in communicating about STEM within and beyond their participation in the after-school program. The research team will explore existing and innovative data collection and analysis methods by drawing on principles of ethnography, video ethnography, mediated discourse analysis, and phenomenological and ethnomethodological analysis of interviews. These analyses will document learning over time in informal STEM learning settings. As there is very little prior research on STEM learning in this population, this project will generate knowledge about how to support STEM sense-making and critical STEM literacy. Furthermore, by testing the designed curriculum and building a partnership with a local community organization, the project will build capacity for broadening participation in informal STEM learning practices.
DATE: -
TEAM MEMBERS: Minjung Ryu Shannon Mary Daniel
resource project Media and Technology
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
DATE: -
TEAM MEMBERS: Beth McGinnis-Cavanaugh Glenn Ellis Alan Rudnitsky Isabel Huff
resource project Public Programs
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
DATE: -
TEAM MEMBERS: Pei-Ling Hsu Elena Izquierdo
resource project Public Programs
The project is designed to engage Hispanic students in grades K-5 in STEM in afterschool programs within community-based organizations (CBOs). The project builds on the foundation of an NSF-supported afterschool science program--APEX (Afterschool Program Exploring Science). In collaboration with National Council of La Raza (NCLR), and ASPIRA, the project adapts APEX into a bilingual English/Spanish format and, using a train the trainer model, disseminates it nationally, using a train the trainer model. Each of the ten local project sites will build on a partnership between a science museum and a CBO affiliate of NCLR or ASPIRA. The project is designed to: (1) Build the organizational capacity of partner science museums to work with CBOs and the Hispanic community. (2) Strengthen links between science museums and Hispanic serving CBOs in their communities. (3) Engage the expertise, involvement, and collaboration of national Hispanic-serving organizations, NCLR and ASPIRA, in STEM education. (4) Increase the engagement of Hispanic children and families in STEM. The project evaluation will investigate how effectively the project builds the organizational capacity of partner museums and CBOs in engaging Hispanic children and families in STEM; the types and strength of science museum/CBO partnerships; the effectiveness of the project in increasing Hispanic student and family engagement in STEM, and the types of contributions the project makes to the field of informal STEM learning. The evaluation will use qualitative and quantitative methods, including surveys, interviews, case studies, social network and collaboration analysis, observations, activity tracking, embedded assessment, photo elicitation, and focus groups.
DATE: -