Skip to main content

Community Repository Search Results

resource project Exhibitions
The project will refine, research and disseminate making exhibits and events that the museum has developed and tested to support early engineering skill development. The project will use cardboard, a familiar and flexible material, to support the activities. The goal is to develop insights and resources for informal educators across the museum field and beyond into how to effectively structure and facilitate open-ended maker education experiences for visitors that expand the number and kinds of museums and families who can engage in these activities. Maker education is often linked to Science, Technology, Engineering and Mathematics (STEM) learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. To address patterns of inequitable access to and participation in both formal and informal learning opportunities, the project will be designed to engage families from under-represented communities and research how they participate in informal engineering activities and environments. The project will make a suite of resources available for museums and other ISE practitioners that will be developed through iterative testing at all of the different settings. These resources will be made widely available via an open access online portal.

The project will research how effectively the use of cardboard making exhibits and events engage families, particularly families from underrepresented groups, in STEM and early engineering. The project's theoretical framework combines elements of: (1) learning sciences theories of family learning in museums; (2) making as a learning process; (3) early engineering practices and dispositions, and (4) equity in museums and the maker movement. The research will be conducted within two multi-month implementations of a large-scale Cardboard Engineering gallery at the Science Museum of Minnesota and two-week scaled implementations of the gallery at each of three recruited partner museum sites. The project design interweaves evaluation and research aims. Paired observations and surveys will be used to research how effectively the project is working in different venues. This integration of research and evaluation will generate a large data set from which to generalize about cardboard making across contexts. Case studies will be used to identify barriers to engagement that can be remedied, but they will provide a rich data set for understanding family learning and engineering in making. Research findings and products will be posted on the Center for Informal Science Education website and submitted for publication in peer-reviewed journals such as Visitor Studies, ASTC Dimensions, the Journal of Pre-College Engineering Education Research and others.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Public Programs
Consideration of the needs of individuals with a wide range of disabilities is not always considered in the early design stages of an informal STEM learning (ISL) activity or program. The primary access approach for people with disabilities becomes the provision of accommodations once the ISL product or environment is created. In contrast, the Universal Design approach considers users with a wide range of characteristics throughout the design process and works to create products and environments that are accessible, usable, and inclusive. This project, called AccessISL, led by the University of Washington's DO-IT (Disabilities, Opportunities, Internetworking and Technology) Center and Museology Program, includes an academic museology program and local ISL sites, representing museums, zoos, aquariums, makerspaces, science centers, and other sites of informal STEM learning. Insights will be gained through the engagement of people with disabilities, museology graduate students and faculty, and ISL practitioners. The AccessISL project model, composed of a set of approaches and interventions, builds on existing research and theory in the fields of education science, change management, effective ISL practices, and inclusive design processes. The project will collect evidence of policies and practices (or lack thereof) that improve the inclusiveness of ISL with respect to a wide range of disabilities and considers approaches for the design and development of new strategies; explores what stakeholders need to make change happen; uncovers challenges to the adoption of inclusive practices in public ISL settings and explores ways to overcome them; and proposes relevant content that might be included in museology curriculum. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project addresses the following two objectives:


For ISL personnel and museology faculty: to increase knowledge, skills, and actions to make ISL programs, facilities, courses, and resources more welcoming and accessible to participants with disabilities and embed relevant practices within their work.
For postsecondary STEM students with disabilities and museology students: to increase knowledge and skills in advocating for ISL offerings that are welcoming and accessible to everyone, including those with a wide variety of disabilities, and to encourage individuals with disabilities to pursue careers in ISL.


The project employs a student-centered approach and a set of practices that embrace the social model of disability, social justice education, disability as a diversity issue, intersectionality, and Universal Design. A leadership team of interns--each member a STEM student with a disability or a museology graduate student--along with project staff will engage with the University of Washington's Museology Program to identify and implement strategies for making ISL activities and courses more welcoming and accessible to individuals with disabilities. An online community of practice will be developed from project partners and others nationwide. A one-day capacity building institute will be held to include presentations, student/personnel panels for sharing project and related experiences, and group discussions to explore issues and further identify systemic changes to make ISL programs more welcoming and accessible to individuals with disabilities. As prototypes of the AccessISL Model are developed, evaluation activities will primarily be formative (looking for strengths and weaknesses) and remedial (identifying/implementing changes that could be made to improve the model). The model will continue to be fine-tuned through formative evaluation. Evaluation of the model components will focus on the experience of a range of stakeholders in the project. Specifically, quantitative data collected will include levels and quality of engagement, accessibility recommendations and products developed, and delivery of ISL services. Qualitative data will be collected through observations, surveys, focus groups, interviews, and case studies.

AccessISL project products will include proceedings of an end-of-project capacity building institute, promising practices, case studies, a video, and other online resources to help ISL practitioners and museology faculty that will result in making future ISL opportunities more inclusive of people with disabilities. AccessISL will advance knowledge and ensure long-term impact using multiple strategies:


broadening the STEM participation of people with disabilities as well as women, racial/ethnic minorities, and other underrepresented groups through the application of universal design
strengthening associations and creating synergy and durable relationships among stakeholders,
encouraging teaching about disability, accessibility, and universal design in museology courses,
empowering students with disabilities and current and future ISL practitioners to advocate for accessible ISL and develops an infrastructure to promote accessible ISL programs nationwide, and
contributing to the body of promising practices with products that will (a) enhance understanding of issues related to the inclusion of people with disabilities in ISL programs and (b) promote inclusive practices.


Outcomes will benefit society by making STEM opportunities available to more people and enhancing STEM fields with the talents and perspectives of people with disabilities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sheryl Burgstahler Meena Selvakumar
resource project Public Programs
While prior research has explored the reasons adults seek learning opportunities, little is known about the factors that moderate older adults' desire to participate in particular learning experiences. This study will contribute to understanding strategies that engage older adults in STEM learning in informal settings. The specific informal STEM Learning (ISL) experience to be studied here involves the innovative use of a carefully structured multigenerational team engineering design challenge that incorporates the engineering design process, recognized as integrative approach to STEM. The project will develop and pilot new tools to measure the impacts of the ISL experience on older adults. The work will ultimately generate new knowledge that supports general measurement practices through the rigorous, systematic development of measures of older adult learning.

During the 18-month pilot study, the team will: (a) develop and test methods for measuring engagement in informal STEM learning and STEM advocacy in adults 50+ years of age; and (b) explore factors that lead to the engagement of this population in ISL and that moderate the outcome of enhanced STEM advocacy. For research purposes, engagement is being defined as focus, participation, and persistence on a task. STEM advocacy is defined as a stance toward personal actions that supports or promotes a cause or policy. The study design includes use of an intergenerational team engineering design challenge involving 48 older adults as the focal ISL activity of the research. Findings from this pilot study will inform a future large-scale study of ISL environments, including specific instructional practices and resulting outcomes, for older adult learning. Defining the construct of STEM advocacy and examining its validity as a potentially measurable outcome will better position the field to design and evaluate more effective older adult learning experiences.

Project results will be disseminated widely through the literature on ISL, adult education and research tool development, as well as existing practitioner networks. The project's connection with networks of lifelong learning institutes creates additional infrastructure opportunities for ISL experiences, including the broader use of intergenerational learning methods and informal STEM design challenges. This Pilot & Feasibility study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Lee Fleming Mac Cannady Jennifer Mangold
resource project Exhibitions
This project responds to calls to increase children's exposure and engagement in STEM at an early age. With the rise of the maker-movement, the informal and formal education sectors have witnessed a dramatic expansion of maker and tinkering spaces, programs, and curricula. This has happened in part because of the potential benefits of tinkering experiences to promote access and equity in engineering education. To realize these benefits, it is necessary to continue to make and iterate design and facilitation approaches that can deepen early engagement in disciplinary practices of engineering and other STEM-relevant skills. This project will investigate how stories can be integrated into informal STEM learning experiences for young children and their families. Stories can be especially effective because they bridge the knowledge and experiences young children and their caregivers bring to tinkering as well as the conversations and hands-on activities that can extend that knowledge. In addition, a unique contribution of the project is to test the hypothesis that stories can also facilitate spatial reasoning, by encouraging children to think about the spatial properties of their emerging structures.

This project uses design-based research methods to advance knowledge and the evidence base for practices that engender story-based tinkering. Using conjecture mapping, the team will specify their initial ideas and how it will be evident that design/practices impact caregivers-child behaviors and learning outcomes. The team will consider the demographic characteristics, linguistic practices, and funds of knowledge of the participants to understand the design practices (resources, activities) being implemented and how they potentially facilitate learning. The outcome of each study/DBR cycle serves as inputs for questions and hypotheses in the next. A culturally diverse group of 300+ children ages 5 to 8 years old and their parents at Chicago Children's Museum's Tinkering Lab will participate in the study to examine the following key questions: (1) What design and facilitation approaches engage young children and their caregivers in creating their own engineering-rich tinkering stories? (2) How can museum exhibit design (e.g., models, interactive displays) and tinkering stories together engender spatial thinking, to further enrich early STEM learning opportunities? and (3) Do the tinkering stories children and their families tell support lasting STEM learning? As part of the overall iterative, design-based approach, the team will also field test the story-based tinkering approaches identified in the first cycles of DBR to be most promising.

This project will result in activities, exhibit components, and training resources that invite visitors' stories into open-ended problem-solving activities. It will advance understanding of mechanisms for encouraging engineering learning and spatial thinking through direct experience interacting with objects, and playful, scaffolded (guided) problem-solving activities.


This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Tsivia Cohen Kim Koin Natalie Bortoli Catherine Haden David Uttal Maria Marcus
resource research Public Programs
This video captures the energy and potetial of the Designing our Tomorrow project. It is intended to complement presentations and posters about Designing our Tomorrow. The Designing Our Tomorrow project aims to develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. Designing our Tomorrow seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices
DATE:
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource research Media and Technology
The Year in ISE is a slidedoc designed to track and characterize field growth, change and impact, important publications, and current topics in ISE in 2018. Use it to inform new strategies, find potential collaborators for your projects, and support proposal development. Scope This slidedoc highlights a selection of developments and resources in 2018 that were notable and potentially useful for the informal STEM education field. It is not intended to be comprehensive or exhaustive, nor to provide endorsement. To manage the scope and length, we have focused on meta analyses, consensus reports
DATE:
TEAM MEMBERS: James Bell
resource evaluation Public Programs
This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2016. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from evaluations of the new GROW exhibition and First Friday program.
DATE:
TEAM MEMBERS: Elisa Israel Sara Davis Kelley Staab
resource evaluation Public Programs
This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2015. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from a Membership study, a formative evaluation of a new Makerspace exhibition, and program evaluation of a workshop for the
DATE:
TEAM MEMBERS: Elisa Israel Sara Davis Kelley Staab Morey Group
resource research Public Programs
This Conference Paper was presented at the International Soceity for the Learning Sciences Confernece in June 2018. We summarize interviews with youth ages 9-15 about their failure mindsets, and if those midsets cross boundaries between learning environments. Previous research on youth’s perceptions and reactions to failure established a view of failure as a negative, debilitating experience for youth, yet STEM and in particular making programs increasingly promote a pedagogy of failures as productive learning experiences. Looking to unpack perceptions of failure across contexts and
DATE:
resource research Public Programs
Making is a recent educational phenomenon that is increasingly occurring in schools and informal learning spaces around the world. In this paper we explore data from maker educators about their experiences with failure. We surveyed maker educators about how they view failure happening with youth in their formal and informal programs and how they respond. The results reveal some concrete strategies that seem to show promise for helping educators increase the likelihood that failure experiences for youth can lead to gains in learning and persistence. This article summarizes a survey of formal
DATE:
resource research Public Programs
This poster shows an overview of the The Designing Our Tomorrow (DOT) project. The project aims to develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. DOT seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices.
DATE:
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource research Public Programs
The maker movement has evoked interest for its role in breaking down barriers to STEM learning. However, few empirical studies document how youth are supported over time, in STEM-rich making projects or their outcomes. This longitudinal critical ethnographic study traces the development of 41 youth maker projects in two community-centered making programs. Building a conceptual argument for an equity-oriented culture of making, the authors discuss the ways in which making with and in community opened opportunities for youth to project their communities’ rich culture knowledge and wisdom onto
DATE: