Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: H Chad Lane Neil Comins Jorge Perez-Gallego David Condon
resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Ibrahim Dahlstrom-Hakki Jamie Larsen Adam Lalor
resource evaluation Media and Technology
With funding from the National Science Foundation, Secrets of the Universe (SOTU) is a multimedia project that has at its core a 40-minute 3D giant screen film directed by a collaboration of K2 Communications Inc., The Stephen Low Company, and University of California Davis Department of Physics. To support and extend the impact of the film for these audiences, the project features an educational website with a variety of resources, including online videos of science content and characters from the film. The independent evaluation team from Knight Williams Inc. conducted a summative
DATE:
TEAM MEMBERS: Valerie Knight-Williams Barbara Flagg Rachael Dobrowolski Dale McCreedy Divan Williams Jr.
resource research Media and Technology
Scientists have long sought to engage public audiences in research through citizen science projects such as biological surveys or distributed data collection. Recent online platforms have expanded the scope of what people-powered research can mean. Science museums are unique cultural institutions that translate scientific discovery for public audiences, often conducting research of their own. This makes museums compelling sites for engaging audiences directly in scientific research, but there are associated challenges as well. This project engages public audiences in contributing to real
DATE:
TEAM MEMBERS: Mmachi God’sglory Obiorah James K.L. Hammerman Will Granger Haley Margaret West Laura Trouille Becky Rother Michael Horn
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource project Media and Technology
It is estimated that there could be 40 billion earth-sized planets orbiting in the habitable zones of stars in the Milky Way. Major advances in long range telescopes have allowed astronomers to identify thousands of exoplanets in recent decades, and the discovery of new exoplanets is a now a common occurrence. Public excitement for the discoveries grown alongside these discoveries, thus opening new possibilities for inspiring a new generation of scientists and engineers that may dream of one day visiting these planets. This project investigates the use of interactive, intelligent educational technologies to generate interest in STEM by allowing learners to explore and even create their own exoplanets. Research will occur across several informal learning contexts, including summer camps, after school programs, planetarium shows, and at home. The approach is based on the idea of "What if?"questions about Earth (e.g., "What if the Moon did not exist?"), designed to trigger interest in STEM and frame exploratory and elaborative discussions around hypothetical science questions that are subsequently linked to the search for habitable exoplanets. Learners are able to interact with and explore scientifically accurate simulations of alternative versions of Earth, while making observations and posing explanations for what they see. Technology-based informal learning experiences designed to act as triggers for and sustainment of interest in STEM have the potential to plug the leaky STEM pipeline, and thus have profound implications for the future of science and technology in the United States.

The project seeks to advance the science of designing technologies for promoting interest in STEM and informal astronomy education in several ways. First, the project will develop simulations for exploratory learning about astronomy and planetary science. These simulations will present hypothetical worlds based on what-if questions and feasible models of known exoplanets, thus giving learners a chance to better understand the challenges of finding a habitable world and learning about what is needed to survive there. Second, a new PBS NOVA Lab will be developed that will focus on Exoplanet education. This web-based activity has the potential to reach millions of learners and will help them understand how planets are formed and the requirements for supporting life. Learners who use the lab will have an opportunity to invent their own exoplanets and export them for first-person exploration. Third, researchers on the project will design and implement Artificial Intelligence-based pedagogical agents to support learning and promote interest. These agents will inhabit the simulations with the learner, acting as a coach and guide, and be designed to be culturally responsive and personalized based on learner preferences. Fourth, interactive exoplanet-focused planetarium shows, that will involve live interaction with simulations, will take place at the Fiske Planetarium (Boulder, CO). Finally, the project will develop a server-based infrastructure for tracking and supporting long term development of interest in STEM. This back-end will track fine-grained behaviors, including movement, actions, and communications in the simulations. Such data will reveal patterns about how interest develops, how learners engage in free-choice learning activities, and how they interact with agents and peers in computer simulations. A design-based research methodology will be employed to assess the power of these different experiences to trigger interest and promote learning of astronomy. A range of different pathways for interest in STEM will therefore be considered and assessed. Research will measure the power of these experiences to trigger interest in STEM and promote re-engagement over time. Innovation lies in the use of engaging and intelligent technologies with thought-provoking pedagogy as a method for extended engagement of diverse young learners in STEM. Project research and educational resources will be widely disseminated to researchers, designers developers and the general public via peer-reviewed research journals, conference presentations, informal STEM education networks of science museums, children's museums, Fab Labs, and planetariums, and public media such as public television's NOVA science program website.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: H Chad Lane Neil Comins Jorge Perez-Gallego David Condon
resource project Media and Technology
A team of experts from five institutions (University of Minnesota, Adler Planetarium, University of Wyoming, Colorado State University, and UC San Diego) links field-based and online analysis capabilities to support citizen science, focusing on three research areas (cell biology, ecology, and astronomy). The project builds on Zooniverse and CitSci.org, leverages the NSF Science Gateways Community Institute, and enhances the quality of citizen science and the experience of its participants.

This project creates an integrated Citizen Science Cyberinfrastructure (CSCI) framework that expands the capacity of research communities across several disciplines to use citizen science as a suitable and sustainable research methodology. CSCI produces three improvements to the infrastructure for citizen science already provided by Zooniverse and CitSci.org:


Combining Modes - connecting the process of data collection and analysis;
Smart Assignment - improving the assignment of tasks during analysis; and
New Data Models - exploring the Data-as-Subject model. By treating time series data as data, this model removes the need to create images for classification and facilitates more complex workflows. These improvements are motivated and investigated through three distinct scientific cases:
Biomedicine (3D Morphology of Cell Nucleus). Currently, Zooniverse 'Etch-a-Cell' volunteers provide annotations of cellular components in images from high-resolution microscopy, where a single cell provides a stack containing thousands of sliced images. The Smart Task Assignment capability incorporates this information, so volunteers are not shown each image in a stack where machines or other volunteers have already evaluated some subset of data.
Ecology (Identifying Individual Animals). When monitoring wide-ranging wildlife populations, identification of individual animals is needed for robust estimates of population sizes and trends. This use case combines field collection and data analysis with deep learning to improve results.
Astronomy (Characterizing Lightcurves). Astronomical time series data reveal a variety of behaviors, such as stellar flares or planetary transits. The existing Zooniverse data model requires classification of individual images before aggregation of results and transformation back to refer to the original data. By using the Data-as-Subject model and the Smart Task Assignment capability, volunteers will be able to scan through the entire time series in a machine-aided manner to determine specific light curve characteristics.


The team explores the use of recurrent neural networks (RNNs) to determine automated learning architectures best suited to the projects. Of particular interest is how the degree to which neighboring subjects are coupled affects performance. The integration of existing tools, which is based on application programming interfaces (APIs), also facilitates further tool integration. The effort creates a citizen science framework that directly advances knowledge for three science use cases in biomedicine, ecology, and astronomy, and combines field-collected data with data analysis. This has the ability to solve key problems in the individual applications, as well as benefiting the research of the dozens of projects on the Zooniverse platform. It provides benefits to researchers using citizen scientists, and to the nearly 1.6 million citizen scientists themselves.

This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Research on Learning in Formal and Informal Settings, within the NSF Directorate for Education and Human Resources.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Gregory Newman Subhashini Sivagnanam Laura Trouille Sarah Benson-Amram Jeff Clune Lucy Fortson Craig Packer Christopher Lintott Daniel Boley
resource project Media and Technology
The Adler Planetarium, Johns Hopkins University, and Southern Illinois University-Edwardsville are investigating the potential of online citizen science projects to broaden the pool of volunteers who participate in analysis and investigation of digital data and to deepen volunteers' engagement in scientific inquiry. The Investigating Audience Engagement with Citizen Science project is administering surveys and conducting case studies to identify factors that lead volunteers to engage in the astronomy-focused Galaxy Zoo project and its Zooniverse extensions. The project is (1) identifying volunteers' motivations for joining and staying involved, (2) determining factors that influence volunteers' movement from lower to higher levels of involvement, and (3) designing features that influence volunteer involvement. The project's research findings will help informal science educators and scientists refine existing citizen science programs and develop new ones that maximize volunteer engagement, improve the user experience, and build a more scientifically literate public.
DATE: -
TEAM MEMBERS: Jordan Raddick
resource evaluation Media and Technology
We have created an instrument to measure the prevalance of various motivations in a population of volunteers in an online citizen science project. Our project is Zooniverse (www.zooniverse.org), a collection of citizen science projects that have grown out of the Galaxy Zoo website. The instrument is based on a theoretical model of motivation, which is described in the attached document.
DATE:
TEAM MEMBERS: Jordan Raddick Karen Carney Jason Reed Andrea Lardner
resource research Media and Technology
Science centers such as museums and planetariums have used stereoscopic (“three-dimensional”) films to draw interest from and educate their visitors for decades. Despite the fact that most adults who are finished with their formal education get their science knowledge from such free-choice learning settings very little is known about the effect of stereoscopic film presentation on their science learning. We explored this issue by designing a quasi-experimental field trial with a short film about the shape of the Milky Way galaxy. The film was produced based on a set of stereoscopic design
DATE:
TEAM MEMBERS: Aaron Price Hee-Sun Lee Mark SubbaRao Evan Kasal Julieta Aguilera
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The team of Associated Universities Inc. (AUI), Michigan State University (MSU), California Academy of Science (the Academy), Astronomical Society of the Pacific (ASP), and Association of Universities for Research in Astronomy (AURA), will bring together experts in astronomy, STEM education, and planetarium show production. This work will tell the story of the people and places that make "big astronomy" possible, particularly the search for exoplanets and understanding of how planets form. The show and related materials will be presented in dozens of venues around the USA and internationally. Through a planetarium show and learning experiences that extend beyond the theater, the team will take visitors to extreme sites of the NSF ground-based observatories on the mountains of Chile and meet the diverse people who enable amazing discoveries in astronomy. In addition, the project develops the Dome+ model, which ensures engagement does not end with the planetarium. Dome+ will include additional content, weekly virtual sessions with STEM professionals, and a suite of closely linked outreach activities. Dome+ will serve as a model to extend engagement and increase the impact of future planetarium shows. Project goals include 1) increasing awareness of the research in astronomy being made at the NSF-funded observatories in Chile, 2) increasing awareness and interest in diverse STEM career opportunities at large observatories and related institutions in the USA, 3) increasing knowledge of science enabled by big observatories, 4) increasing Latinx perceptions as someone who can have a career at a major observatory, and 5) developing the Dome+ model and identify best practices for implementation. Iterative and summative evaluation of the project by collaborators at MSU will address four main questions: How does the Dome+ model affect visitors' perceptions of diversity of careers in STEM? How does the Dome+ model affect visitors' interest and understanding of Chile as an ideal observing location for astronomy? How does the Dome+ model support visitors' interest and understanding of the science of exoplanets? How do planetariums implement Dome+, and how does implementation affect the outcomes for visitors? The impact assessment component of this project takes places in four phases. The goals of the first phase are to leverage the expertise of the research team to inform the creation of the planetarium show and to set up a robust research agenda to be achieved in Years 2-4 of the project. The goals of the second phase are to collect preliminary data from visitors on their responses to planetarium show content and to use this information to advise on edits to the show and to develop the content and format of the web-portal and educational materials. The goal of the third phase is to then collect data on how effectively the technology-rich environments of the three components of the Dome+ model (planetarium show, web-portal, educational materials) work in concert to reach the intended goals of changing visitors' perceptions of diversity in STEM, engaging visitors with astronomy content on exoplanets, and exposing visitors to the wonders of astronomy research in Chile. The goal of the fourth phase is to perform data analysis, synthesize findings and make recommendations for future implementations of the Dome+ model for practitioners. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Timothy Spuck Vivian White Ryan Wyatt Shannon Schmoll National Radio Astronomy Observatory
resource evaluation Media and Technology
In March of 2016, the Exploratorium transmitted a live webcast of a total solar eclipse from Woleai, a remote island in the southwestern Pacific. The webcast reached over 1 million viewers. Evaluation reveals effective use of digital media to engage learners in solar science and related STEM content. Edu, Inc. conducted an external evaluation study that shows clear and consistent evidence of broad distribution of STEM content through multiple online channels, social media, pre-produced videos, and an app for mobile devices. IBM Watson did a deep analysis of tweets on eclipse topics that
DATE:
TEAM MEMBERS: Douglas Spencer Sasha Minsky Jediah Graham