Skip to main content

Community Repository Search Results

resource project Media and Technology
This project investigates long-term human-robot interaction outside of controlled laboratory settings to better understand how the introduction of robots and the development of socially-aware behaviors work to transform the spaces of everyday life, including how spaces are planned and managed, used, and experienced. Focusing on tour-guiding robots in two museums, the research will produce nuanced insights into the challenges and opportunities that arise as social robots are integrated into new spaces to better inform future design, planning, and decision-making. It brings together researchers from human geography, robotics, and art to think beyond disciplinary boundaries about the possible futures of human-robot co-existence, sociality, and collaboration. Broader impacts of the project will include increased accessibility and engagement at two partner museums, interdisciplinary research opportunities for both undergraduate and graduate students, a short video series about the current state of robotic technology to be offered as a free educational resource, and public art exhibitions reflecting on human-robot interactions. This project will be of interest to scholars of Science and Technology Studies, Human Robotics Interaction (HRI), and human geography as well as museum administrators, educators and the general public.

This interdisciplinary project brings together Science and Technology Studies, Human Robotics Interaction (HRI), and human geography to explore the production of social space through emerging forms of HRI. The project broadly asks: How does the deployment of social robots influence the production of social space—including the functions, meanings, practices, and experiences of particular spaces? The project is based on long-term ethnographic observation of the development and deployment of tour-guiding robots in an art museum and an earth science museum. A social roboticist will develop a socially-aware navigation system to add nuance to the robots’ socio-spatial behavior. A digital artist will produce digital representations of the interactions that take place in the museum, using the robot’s own sensor data and other forms of motion capture. A human geographer will conduct interviews with museum visitors and staff as well as ethnographic observation of the tour-guiding robots and of the roboticists as they develop the navigation system. They will produce an ethnographic analysis of the robots’ roles in the organization of the museums, everyday practices of museum staff and visitors, and the differential experiences of the museum space. The intellectual merits of the project consist of contributions at the intersections of STS, robotics, and human geography examining the value of ethnographic research for HRI, the development of socially-aware navigation systems, the value of a socio-spatial analytic for understanding emerging forms of robotics, and the role of robots within evolving digital geographies.

This project is jointly funded by the Science and Technology Studies program in SBE and Advancing Informal STEM Learning (AISL) Program in EHR.
DATE: -
TEAM MEMBERS: Casey Lynch David Feil-Seifer
resource project Exhibitions
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.

This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Kevin Ponto David Gagnon
resource project Exhibitions
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.

The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:


RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?

Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?


RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?

Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.




The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.

This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Ronda Jenson Kelly Roberts
resource project Media and Technology
This Pilot and Feasibility study will build foundational knowledge about basic aspects of STEM webcams in the United States (US) from the perspectives of both practitioners and viewers. Thousands of webcams available to the public are operated by STEM organizations, such as zoos, museums, and government agencies. Learning theory suggests that STEM webcams, especially those with accompanying interpretive tools, have the potential to offer rich informal learning opportunities. However, yet no research has quantified any aspect (cognitive, behavioral, or emotional) of viewer outcomes. This study will be the first to develop baseline data regarding cognitive, behavioral, and emotional aspects of perceived viewer experience. Project activities include:


An inventory of STEM webcams that exist in the US, the STEM disciplines they represent, learning and engagement tools they employ, the number of viewers they reach, and the resources required for their operation
A survey of webcam operators, their STEM education goals, implementation strategies, and evaluation results; and
Surveys and interviews gathering data on viewers demographics and potential increase in curiosity, interest, knowledge, and behavior toward the STEM subject. This research will provide foundational knowledge for the STEM-education and research community that quantifies and describes many facets of the population of STEM webcams in the inventory.


Research activities will take place in three distinct phases, with Phase 1 laying the groundwork for Phases 2 and 3. Phase 1: The project team will conduct a systematic internet search for all identifiable STEM related webcams. Phase 2 (operator-focused): An online survey of practitioners of webcams operated by US-based STEM organizations will be conducted using Qualtrics software. Likert scales will be used. Various hypotheses will be tested regarding webcam program objectives, operations, and evaluations from the perspective of program operators or practitioners. Phase 3 (viewer-focused): Surveys and interviews with likely viewers of STEM webcams. Using the webcam inventory built in Phase 1, the team will collaborate with 20 informal STEM institutions that agree to survey their constituents to test hypotheses regarding webcam viewing practices, such as why and how viewers watch, and perceived outcomes of viewing, such as perceived influence on their interest, attitudes, knowledge, or behavior. The findings from this study will be widely shared with informal STEM institutions and webcam operators. It will provide foundational data for future experimental studies.
DATE: -
TEAM MEMBERS: Sarah Schulwitz Sara Hagenah Vanessa Fry
resource research Media and Technology
Kid-focused STEM podcasts have grown in popularity over the years, but the ISE field lacks knowledge of the impact and value of this medium as a means for engaging children and families in science learning and discovery. This research summary shares the results of an exploratory study of the popular children's science podcast, Brains On!, in an effort to being to fill this knowledge gap. ​The research was guided by three overarching research questions: Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts? How are Brains On
DATE:
TEAM MEMBERS: Amy Grack Nelson Choua Her Scott Van Cleave Juan Dominguez-Flores
resource research Media and Technology
The Brains On! exploratory research study was guided by three overarching research questions: Who is the audience for Brains On! and what are their motivations for listening to children’s science podcasts? How are Brains On! listeners using the podcast and engaging with its content? What kinds of impacts does Brains On! have on its audiences? These questions were answered through a three-phase mixed-methods research design. Each phase informed the next, providing additional insights into answering the research questions. Phase 1 was a review of a sample of secondary data in the
DATE:
resource research Media and Technology
In this paper, our collaborative project team shares design principles and lessons learned from research for designing an app to support families’ joint engagement with media and promote powerful shared learning experiences. We provide a rationale, based on research literature, for why a second-screen app in particular addresses our project goals. In addition, we describe the Splash and Bubbles for Parents app components as well as the co-design process and design-based research studies conducted to inform its design and development. Finally, our team offers design principles grounded in
DATE:
TEAM MEMBERS: Stephanie Wise Ximena Dominguez Phil Balisciano Christine Paulsen Tiffany Leones Danae Kamdar Kayla Huynh Holly Funk
resource research Media and Technology
When Chicago Children’s Museum (CCM) closed in March 2020 due to the COVID-19 pandemic, the reality of a prolonged closure soon hit home. Like all of our colleague museums, we needed to find a way to remain relevant to our community and carry out important aspects of our work. One key initiative that needed to be sustained was our National Science Foundation (NSF)-funded research-to-practice project: TALES (Tinkering and Learning Engineering Stories)1. A partnership between CCM, Loyola University Chicago, and Northwestern University, this project studies how narrative and storytelling
DATE:
resource research Media and Technology
In order for children to identify with STEM fields, it is essential that they feel there is a place within STEM for individuals “like them.” Unfortunately, this identification is difficult for Hispanic/Latine youths because of lack of representation and even stereotyping that is widespread in educational institutions in the United States. Some research has been done, though, that suggests there is promise in understanding the ways that parents help children see themselves as “STEM people” in spite of these obstacles. Building on this work, we present some of our own research on the experiences
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian
resource research Media and Technology
The goal of this NSF-funded RAPID research project was to advance understanding of how children’s science podcasts can provide families with information to help ease children’s worries during a pandemic by increasing children’s understanding of pandemic-related science concepts and supporting pandemic-related family conversations. Our research was guided by the following questions: 1. How and to what extent do Brains On!’s coronavirus-based episodes help children and their families understand and talk about science-related pandemic topics? 2. What kinds of conversations are
DATE:
resource research Media and Technology
This report, prepared for The Jim Henson Company, shares findings of a sub-study investigating the types of support parents and caregivers need when navigating and using the second-screen Splash and Bubbles for Parents app. This study originated from a prior field study finding indicating families would benefit from support around the app since it represents a new kind of digital tool. In partnership with local Public Broadcasting Service (PBS) stations, we provided parents and caregivers more detailed support around the features of the app. Based on survey and interview findings, parents and
DATE:
TEAM MEMBERS: Tiffany Leones Ximena Dominguez Danae Kamdar Kayla Huynh Melissa Gedney
resource research Media and Technology
The Splash and Bubbles for Parents app is a second-screen digital resource for parents and caregivers to support young children’s learning of ocean science. This report, prepared for The Jim Henson Company, shares findings of a field study conducted to examine the promise of the app in supporting parents’ and caregivers’ behaviors and attitudes toward science and technology; families’ joint engagement with media (adults and children watch and play together); and children’s science learning. Findings indicate that parents and caregivers found the app helpful for supporting their children’s
DATE:
TEAM MEMBERS: Ximena Dominguez Elizabeth Rood Danae Kamdar Tiffany Leones Kayla Huynh