Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian Zahra Hazari Philip Sadler Gerhard Sonnert
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.

The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE: -
TEAM MEMBERS: Joe Hastings Armelle Casau Obenshain Koren Kersti Tyson Angelo Gonzales
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Professional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE: -
TEAM MEMBERS: Katharine Barrett Jennifer White
resource evaluation Public Programs
August, 2009 Communities of Effective Practice, 2008-2009 Evaluation Abstract: The Communities of Effective Practice (CEP) project is a National Science Foundation (NSF)-funded project to develop a professional development model for supporting math and science instructional practices that are culturally responsive within American Indian communities. This report summarizes findings from the Year 3 evaluation (conducted during the 2008-2009 academic year) and discusses these findings within the context of the Years 1 and 2 evaluations. It presents key considerations for developing a Community
DATE:
TEAM MEMBERS: Gina Magharious Kasey McCracken Utah State University
resource project Informal/Formal Connections
In several primarily Hispanic, low socio-economic school districts of the southwest in partnership with local institutions of higher learning, this 48-month project will develop programs and materials to attract parents of children of all grade levels and make them active supporters of a system that promotes good mathematical learning for their children. These programs and materials will help them become aware of what is happening in their children's classroom; offer them occasions to take on leadership roles in working with teachers, administrators, and other parents; and provide them opportunities for in-depth experiences with school mathematics. The materials will be initially developed and piloted in the Sunnyside School District. After revision from the pilot project, the project will be implemented in several other school districts.
DATE: -
TEAM MEMBERS: David Gay Marta Civil
resource project Public Programs
The New York Hall of Science and Community School District #24 request $46,744 for a planning grant whose goal is to empower parents by bringing informal science and math education experiences to create a working team of parents, teachers, and museum staff to underserved, ethnically diverse students in their formative years, and their families. A major objective is to develop a framework for a science resource kit for home use by parents and children in grades K-3, and related parent training. The target audience is low income, minority, recently immigrated parents, with little to no involvement in their children's education. Parents from the target audience will serve on the Planning Team. The function of the kits is to provide exciting, intergenerational, exploratory experiences in math and science that are related to the school curriculum. Each kit will be designed to be completely portable and will appear to be a large trunk with wheels. Contents may include: a laptop-size computer; hand lenses and two small microscopes; diffraction gratings and flourescent sources; ramps and balls; mirrors, lenses and other optics.
DATE: -
TEAM MEMBERS: John Hammer
resource project Public Programs
The Developmental Studies Center is supporting the active involvement of parents in their children's mathematical development, helping parents understand more about how their children learn mathematically and socially, and increasing the likelihood that children will discuss mathematics with an adult who is significant in their lives. The first phase of this project develops, pilot tests, and evaluates a Homeside Math resource book for each grade level, K-2, with activities teachers can send home to foster positive interaction about mathematics between parents and their children. These activities are related to exemplary school curricula, particularly those developed with NSF support. The next phase develops a limited number of additional activities to add to the Homeside Math collection to be published as Community Math. Community Math is a resource book for youth workers with activities that foster mathematical discussions between children ages 5-8 and a significant adult and can be used in a variety of community organization settings and sent home for family use. Workshops are developed for parents, teachers, and youth workers to strengthen their knowledge of child-centered instructional strategies, meaningful activities, and how children develop mathematically and socially. And facilitator workshops are developed for parents, teachers, and youth workers to enable them to lead workshops for parents.
DATE: -
TEAM MEMBERS: Richard Cossen Laurel Robertson
resource project Public Programs
The New Mexico Museum of Natural History and Science proposed to develop an outreach science and mathematics program with a parent involvement and teacher enhancement professional development component. The goals of the project are as follows: (1) to involve parents in their children's education; (2) to promote a positive attitude on behalf of parents and students toward science and mathematics; (3) to increase teachers' level of comfort in teaching science; and (4) to enhance teacher's confidence in the hands-on approach as an effective method for teaching science. The objectives for the parent component of this project are: acquaint parents with the national and state science education goals and standards; introduce parents to activities that can be done at home with children; and provide families with materials and activity sheets that can be used at home. The objectives for the teacher component of this project are: (1) to provide teachers with opportunities for increased communication with parents about science literacy for children; (2) provide professional development for teachers on the use of hands-on science activities in the classroom; and (3) to providing bilingual activity guides and kits containing materials to encourage science learning. The methods for implementing this project will be varied according to the needs of the target audiences. Parents and children will be engaged through parent workshops and multi-aged children's activities conducted at the museum by experienced science educators. The professional development for teachers' component of this project will include an extensive summer workshop, on-going training/ planning sessions during the school calendar year and session on the uses of the bilingual teaching manuals. The cost sharing for this NSF award is 46.7% of the total project cost.
DATE: -
TEAM MEMBERS: Madeleine Zeigler Jayne Aubele
resource project Public Programs
The New York City Board of Education Community School District #18 requests $862,790 to design a Parent Involvement in Science, Mathematics, and Technology Program. The program is designed to stimulate parents to become informed, active proponents for high quality and more universally available science, mathematics, and technology education for their children. The SMART Parents project team would design and disseminate strategies to enable parents to support their children's science, mathematics, and technology education. Innovative materials and strategies will be developed that will actively engage over 6,000 parents/families over the thirty-eight (38) months duration of the project. Almost 20,000 families will become involved in the leadership-training component of this project. The initiative will assist parents in supporting their children's education in science, mathematics, and technology education. Ultimately, the project will enhance parents' knowledge and understanding of Informal Science Education.
DATE: -
TEAM MEMBERS: Barbara Berg Carolyn Parker Lorraine Barber
resource project Public Programs
This project, Project PARTNERS (Parents: Allies Reinforcing Technology and Neighborhood Educators Reinforcing Science) supports parents and their children in learning the mathematics and science taught in the schools. The Bronx Educational Alliance (BEA), in collaboration with Lehman College, School District Nine, the Bronx High School Superintendency, and the Bronx Federation of High School Parent Association Presidents, provides a four-month Parent Academy twice a year. Thirty-six parents (20 elementary, 6 middle and 10 high school), from 18 Bronx schools in three K-12 corridors with which the BEA Resource/Outreach Center for Parents currently works, participate in each Academy, reaching 360 over five years. Project PARTNERS goals are to: 1) increase student achievement in 18 Corridor Schools through meaningful parental support; 2) provide parent training in Math, Science and Technology and enable parents to understand the New Standards; 3) develop skills to reinforce their children's learning at home; and 4) model how to effectively learn in science-rich informal educational institutions. Parents meet on Saturdays twice a month for six hours. On one Saturday they team with a teacher and child to visit a science rich institution. On the other Saturday they learn to use computer software programs which support MST, and math concepts through games and manipulatives. Incentives for parents include learning computer skills and stipends of $300 upon completion. The BEA Academies coordinate with the BUSI and District's Family Math and Family Science workshops.
DATE: -
TEAM MEMBERS: Herminio Martinez Marietta Saravia-Shore
resource project Public Programs
The National council of La Raza (NCLR), the nation's principal Hispanic constituency-based organization, seeks funding from the National Science Foundation's Informal Science Education Program for a four-year community-centered demonstration program. Project EXCEL-MAS, the Math and Science component of its EXCEL-MAS is designed to develop and encourage the adoption of supplemental math and science programs for at-risk Hispanic elementary and middle school students and their parents, using thematic, hands-on approaches; and ultimately help to increase the numbers of Hispanic student enrolling and succeeding in paths which lead to advanced study in math and science. Hispanics -- the youngest and fastest-growing major U.S. population, numbering 22.4 million or 9% of the U.S. population according to the 1990 Census -- continue to be most undereducated major U.S. population. Only about half of Hispanics are high school graduates, and fewer than one in ten have completed college; only about one-quarter of high school graduates have followed curricular tracks including the math, science and language arts needed for college attendance; national studies suggest that Hispanic 17-year-olds on average have math and science skills at the level of White 13-year- olds. Contributing to these problems are a lack of culturally appropriate, meaningful parent involvement or family-wide approaches to education, supplemental programs to motivate and support at-risk students, wrap-around social services for low- income students and their families, and efforts to promote more equitable Hispanic access to the full school curriculum.
DATE: -
TEAM MEMBERS: Marisa Saunders Jose Delgadillo