Skip to main content

Community Repository Search Results

resource project Public Programs
Chicago's DuSable Museum of African American History will develop and present the "Exploration of African American Physicians and Surgeons" project with an overall goal to expose young people in the community to the opportunities and benefits of STEM education. Project components will include educational programming, lectures, and an historical exhibition revolving around African American contributions and achievements within the world of medicine. The exhibition will focus on work of Dr. Daniel Hale Williams, the founder of Chicago's Provident Hospital, the first non-segregated hospital in the United States. Dr. Williams was the first general surgeon to perform a documented and successful pericardium surgical procedure to repair a wound. The project's educational programming will explore the ways in which other African American doctors broke down racial barriers within the field of medicine.
DATE: -
TEAM MEMBERS: Cecil Lucy
resource project Exhibitions
The Maryland Science Center (MSC), in collaboration with Johns Hopkins University (JHU), the University of Maryland, Baltimore (UMB), and Morgan State University (MSU), has sought the support of the National Institutes of Health SEPA (Science Education Partnership Award) Program to develop "Cellular Universe: The Promise of Stem Cells," a unique exhibition and update center with related programs that highlight the most current science in cell biology and stem cell research. Visitor surveys have shown that science museum visitors are very interested in learning about stem cell research, but know little about the science of stem cells or cell biology, which form the basis of stem cell research. The goal of this project is to help visitors learn about advances in cell biology and stem cells so that they will make informed health-related decisions, explore new career options, and better understand the role of basic and clinical research in health advances that affect people's lives. Topics to be covered include the basic biology of cells, the role of stem cells in human development, current stem cell research and the clinical research process. This exhibition will also address the controversies in stem cell research. Our varied advisory panel, including cell biologists, physiologists, adult and embryonic stem cell researchers and bioethicists, will ensure the objectivity of all content. "Cellular Universe: The Promise of Stem Cells" will be a 3,500 square-foot exhibition to be planned, designed and prototyped in Fall 2006-Winter 2009, and installed in MSC's second-floor human body exhibition hall in Spring 2009. This exhibition will build on the successful model of "BodyLink," our innovative health science update center funded by a 2000 SEPA grant (R25RR015602) and supported by partnerships with JHU and UMB.
DATE: -
TEAM MEMBERS: Roberta Cooks
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. The RAPID: Using Popular Media to Educate Youth About the Biology of Viruses and the Current COVID-19 Pandemic project's goal is develop a web-accessible package of customizable graphics, illustrated stories, and essays, which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8.
DATE:
TEAM MEMBERS: Judy Diamond
resource project Public Programs
The concept of One Health emphasizes the connection between human health, the health of animals and the health of the environment – with the goal of improving all health. The One Health approach supports collaborations between physicians, veterinarians, dentists, nurses, ecologists, and other science, health and environmentally-related disciplines. The One Health approach is increasingly important as our population rises, agriculture intensifies, and habitat destruction increases.

The goal of our “One Health” project is to increase adolescents’ understanding of One Health concepts and the importance of One Health collaborations. We will accomplish this by developing and disseminating: (1) Classroom lessons for high school students that are case-based, incorporate hands-on activities, and align with the Next Generation Science Standards, and; (2) Activities for middle and high school students that are suitable for use in a variety of informal (non-school) education settings. During this five-year project we will:
• Collaborate with scientists and life science teachers to develop case-based, hands-on One Health lessons for high school students.
• Develop and use a reliable and valid pre/post assessment to determine the impact of the One Health lessons on student learning.
• Implement a dissemination plan in which we will recruit, train and support a national network of “teacher-presenters” to lead professional development workshops for their peers throughout the US.
• Develop activities that will be used for middle school and high school One Health field trip programs at the University of Rochester’s Life Sciences Learning Center.
• Collaborate with informal educators to create One Health activities to be used in their outreach programs.

This project is significant because it will improve students’ understanding of the One Health approach to promoting the health of people, animals, and the environment. This project will also significantly impact teachers’ awareness of One Health, and how One Health concepts are aligned with NGSS and can be incorporated into their existing curriculums. This project is innovative because it will develop One Health lessons and activities for use in a variety of settings, through partnerships with scientists, science teachers, and informal science educators. This project will also feature an innovative model for disseminating the One Health lessons to teachers nationwide using peer-to-peer professional development.
DATE: -
TEAM MEMBERS: Dina Markowitz
resource project Media and Technology
For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.

Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.

PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.

NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
DATE: -
TEAM MEMBERS: Patti Parson Leah Clapman
resource project Public Programs
Citizen science is a form of Public Participation in Scientific Research (PPSR) in which the participants are engaged in the scientific process to support research that results in scientifically valid data. Opportunities for participation in real and authentic scientific research have never been larger or broader than they are today. The growing popularity and refinement of PPSR efforts (such as birding and species counting studies orchestrated by the Cornell Lab of Ornithology) have created both an opportunity for science engagement and a need for more research to better implement such projects in order to maximize both benefits to and contributions from the public.

Towards this end, Shirk et al. have posted a design framework for PPSR projects that delineates distinct levels of citizen scientist participation; from the least to the highest level of participation, these categories are contract, contribute, collaborate, co-create, and colleagues. The distinctions among these levels are important to practitioners seeking to design effective citizen science programs as each increase in citizen science participation in the scientific process is hypothesized to have both benefits and obstacles. The literature on citizen science models of PPSR calls for more research on the role that this degree of participation plays in the quality of that participation and related learning outcomes (e.g., Shirk et al., 2012; Bonney et al., 2009). With an unprecedented interest in thoughtfully incorporating citizen science into health-based studies, citizen science practitioners and health researchers first need a better understanding of the role of culture in how different communities approach and perceive participation in health-related studies, the true impact of intended educational efforts from participation, and the role participation in general has on the scientific process and the science outcome.

Project goal to address critical barrier in the field: Establish best practices for use of citizen science in the content area of human health-based research, and better inform the design of future projects in PPSR, both in the Denver Museum of Nature & Science’s Genetics of Taste Lab (Lab), and importantly, in various research and educational settings across the field.

Aims


Understand who currently engages in citizen science projects in order to design strategies to overcome the barriers to participation that occur at each level of the PPSR framework, particularly among audiences underrepresented in STEM.
Significantly advance the current knowledge regarding how citizen scientists engage in, and learn from, and participate in the different levels of the PPSR framework.
Determine the impact that each stage of citizen science participation has on the scientific process.
DATE: -
TEAM MEMBERS: Nichole Garneau Tiffany Nuessle
resource project Public Programs
This project specifically addresses the SMRB’s imperative that “NIH’s pre-college STEM activities need a rejuvenated integrated focus on biomedical workforce preparedness with special considerations for under-represented minorities.”

Approximately one-third of CityLab’s participants are under-represented minority (URM) students, but we now have a unique opportunity to build a program that will reach many URM students and position them for undergraduate STEM success. We have partnered with urban squash education organizations in Boston (SquashBusters) and New York (CitySquash and StreetSquash) that recruit URM/low SES students to participate in after-school squash training and academic enrichment programs. We have also partnered with the Squash + Education Alliance (previously named the National Urban Squash and Education Association) to disseminate the new program—first from Boston to New York and later through its national network of affiliated squash education programs.

In order to bring this project to fruition, Boston University is joining forces with Fordham University in New York. Fordham is home to CitySquash so these organizations provide an ideal base for the New York activities. The proposed project will enable us to demonstrate feasibility and replicability within the 5-year scope of this grant. Our shared vision is to develop a national model for informal precollege biomedical science education that can be infused into a myriad of similar athletic/academic enrichment programs.

The squash education movement for urban youth has been highly successful in enrolling program graduates in college. Since the academic offerings of the squash education programs focus on English Language Arts and Mathematics, their students struggle with science and rarely recognize the tremendous opportunities for long- term employment in STEM fields.

This project will bring CityLab’s resources to local squash programs in a coordinated and sustained engagement to introduce students to STEM, specifically the biomedical sciences. Together with the urban squash centers, we will build upon the hands-on life science experiences developed and widely disseminated by CityLab to create engaging laboratory-based experiences involving athletics and physiology.

The specific aims of the proposed project are:


To develop, implement, and evaluate a new partnership model for recruiting URM/low SES students and inspiring them to pursue careers in STEM; and
To examine changes in the science learner identities (SLI) of the students who participate in this program and establish this metric as a marker for continued engagement in STEM.


With the involvement of the two urban research universities, three local squash education programs, and SEA, we see this new SEPA initiative as a unique way to pilot, refine, and disseminate an after-school/informal science education program that can have a significant impact on the nation’s production of talented STEM graduates from URM/low SES backgrounds.
DATE: -
TEAM MEMBERS: Carl Franzblau Donald DeRosa Carla Romney
resource project Public Programs
Recognizing that race can influence African American youths' perception of which academic disciplines and careers are available to them, this pilot study will explore how African American youths' physical and social communities can be leveraged to support the evolution of their STEM identity and their ability to recognize their potential as scientists. Unfortunately, many of these youths live in communities that are void of critical resources that research has demonstrated time and time again are critical for success in STEM disciplines and careers. This lived reality for many African American youth is the direct result of long-standing disparities in access and opportunities, fueled by racial socialization and biased institutional structures. This pilot will empower youth to recognize these disparities and use science to provide solutions. One perilous societal disparity experienced in many predominately African American communities is the lack of access to fresh produce and healthy food. As a mechanism for potential resolution, this project will consider the utility of community gardens to address this important community need and as a strategy to engage youth in STEM content and skill development. While this notion is not novel to NSF, the intent to utilize an augmented reality (AR) storytelling platform for data collection and project experiences is innovative. This technology will also provide a space for participants to share their work with each other and their broader communities. To our knowledge, this pioneering approach has not been previously piloted in this context. In addition, the pilot will engage multiple youth serving community-based organizations such as park and recreation centers and faith-based organizations in this work, which is also innovative. This is significant, as youth serving community-based organizations are often play important role in the social, educational, and cultural lives of youth and their families in communities. These organizations are often at the heart of the community, figuratively and literally. If successful, this pilot could be transformative and provide a strong basis to support similar work in other communities.

Over the two-year project duration, eighty African American youth ages 11 -14 will participate in the year-long program, across three youth-serving, community-based organizations at four sites. They will be exposed to relevant agricultural, geological, engineering and technological content through a newly developed curriculum called "Cultivating My Curriculum." Community mentors and undergraduate role models will facilitate the instruction and hands-on experiences in the garden and with the AR platform. A capstone event will be a held for the participants and community to convene to learn more about the results of the pilot and share recommendations with community leaders for improving the disparities identified during the pilot. The research component will focus on: (a) the impact of the sociocultural theoretical framework grounding the work on youths' STEM identities, (b) the integration of the AR tool, and (c) mentorship. Formative and summative evaluation will take place through focus groups, surveys, journals, and youth storytelling. Ultimately, the project endeavors to advance the narrative that African Americans are scientists and that science can be used to improve the lives of African Americans and other groups challenged by structural and racial disparities.

This pilot study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harrison Pinckney David Boyer Barry Garst Dilrukshi Thavarajah
resource project Informal/Formal Connections
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.

This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.

This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Bernadette Sanchez Aerika Loyd Rex Babiera Nicole Kowrach
resource evaluation Museum and Science Center Programs
The Museum of Science, Boston’s Research and Evaluation Department conducted a summative evaluation of The Hall of Human Life (HHL) exhibition. This 9,700 square foot exhibition is geared towards older children and adults. It is focused on human biology and human health with the main message, “Human beings are changing in a changing environment.” Visitors are able to use their own bodies and behaviors to understand biological mechanisms. Unique to this exhibition, visitors are able to use scannable wristbands to record and compare personal data with other Museum visitors to learn about their
DATE:
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource research Games, Simulations, and Interactives
We describe a game and teachers’ experiences using it in their middle and high school science courses. The game, which is called “Luck of the Draw,” was designed to engage middle, high school, and college students in genetics and encourage critical thinking about issues, such as genetic engineering. We introduced the game to high school science teachers attending a summer workshop and asked them to describe their initial impressions of the game and how they might use it in their classes; later, during the academic year, we asked them whether they used the game in their classrooms and, if so
DATE:
TEAM MEMBERS: Alicia Bower Kami L. Tsai Carey S. Ryan Rebecca Anderson Andrew Jameton Maurice Godfrey