Skip to main content

Community Repository Search Results

resource project Informal/Formal Connections
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.

The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.

This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jan Morrison Jennifer Iriti Alaine Allen David Boone
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
This application requests support to enable a team of experienced science educators and biomedical and behavioral health network scientists to develop and implement the Worlds of Connections curriculum. Most middle school students are familiar with patient care-related health careers (e.g., nurses, dentists, surgeons), but few know about emerging careers in network science that can be leveraged to improve population health. This innovative and research-based science program is strategically designed to increase awareness of, understanding of, and interest in the important role of network science for health. This project will design learning activities that incite interest in network science applications to biomedical and public health research. The long- term goal is to enhance the diversity of the bio-behavioral and biomedical workforce by increasing interest in network science among members of underrepresented minority communities and to promote public understanding of the benefits of NIH-funded research for public health. The goal of this application is to identify and create resources that will overcome barriers to network science uptake among underserved minority middle school youth. The central hypothesis is that the technology-rich field of network science will attract segments of today’s youth who remain uninterested in conventional, bio-centric health fields. Project activities are designed to improve understanding of how informal STEM experiences with network science in health research can increase STEM identities, STEM possible selves, and STEM career aspirations among youth from groups historically underrepresented in STEM disciplines at the center of health science research (Aim 1) and create emerging media resources via augmented reality technologies to stimulate broad interest in and understanding of the role of network science in biomedical and public health research (Aim 2). A team led by University of Nebraska-Lincoln sociologists will partner with the University of Nebraska at Omaha; state museums; centers for math, science, and emerging media arts; NIH-funded network scientists; educators; community learning centers at local public schools; learning researchers; undergraduates; software professionals; artists; augmented reality professionals; storytellers; and evaluation experts to accomplish these goals and ensure out of school learning will reinforce Next Generation Science Standards. The Worlds of Connections project is expected to impact 35,250 youth and 20,570 educators in Lincoln and Omaha, Nebraska by: adding network science modules to ongoing 6th-8th-grade afterschool STEM clubs in community learning centers; adding network science for health resources to a summer graduate course on “activating youth STEM identities” for sixth to twelfth grade STEM teachers; connecting teachers with local network scientists; creating free, downloadable, high-quality emerging media arts-enhanced stories; and publishing peer-reviewed research on the potential of network science to attract youth to health careers. Coupled with the dissemination plan, the project design and activities will be replicable, allowing this project to serve as a model to guide other projects in STEM communication.

PUBLIC HEALTH RELEVANCE:
The lack of public understanding about the role of network science in the basic biological and social health sciences limits career options and support for historically underrepresented groups whose diverse viewpoints and questions will be needed to solve the next generation of health problems. The Worlds of Connections project will combine network science, social science, learning research, biology, computer science, mathematics, emerging media arts, and informal science learning expertise to build a series of monitored and evaluated dissemination experiments for middle school science education in high poverty schools. Broad dissemination of the curriculum and project impacts will employ virtual reality technologies to bring new and younger publics into health-related STEM careers.
DATE: -
TEAM MEMBERS: Julia Mcquilan Grace Stallworth
resource project Public Programs
The goals of this proposal are: 1) to provide opportunities for underrepresented students to consider careers in basic or clinical research by exciting them through an educational Citizen Science research project; 2) to provide teachers with professional development in science content and teaching skills using research projects as the infrastructure; and 3) to improve the environments and behaviors in early childcare and education settings related to healthy lifestyles across the state through HSTA students Citizen Science projects. The project will complement or enhance the training of a workforce to meet the nation’s biomedical, behavioral and clinical research needs. It will encourage interactive partnerships between biomedical and clinical researchers,in-service teachers and early childcare and education facilities to prevent obesity.

Specific Aim I is the Biomedical Summer Institute for Teachers led by university faculty. This component is a one week university based component. The focus is to enhance teacher knowledge of biomedical characteristics and problems associated with childhood obesity, simple statistics, ethics and HIPAA compliance, and the principles of Citizen Science using Community Based Participatory Research (CBPR). The teachers, together with the university faculty and staff, will develop the curriculum and activities for Specific Aim II.

Specific Aim II is the Biomedical Summer Institute for Students, led by HSTA teachers guided by university faculty. This experience will expose 11th grade HSTA students to the biomedical characteristics and problems associated with obesity with a focus on early childhood. Students will be trained on Key 2 a Healthy Start, which aims to improve nutrition and physical activity best practices, policies and environments in West Virginia’s early child care and education programs. The students will develop a meaningful project related to childhood obesity and an aspect of its prevention so that the summer institute bridges seamlessly into Specific Aim III.

Specific Aim III is the Community Based After School Club Experiences. The students and teachers from the summer experience will lead additional interested 9th–12th grade students in their clubs to examine their communities and to engage community members in conducting public health intervention research in topics surrounding childhood obesity prevention through Citizen Science. Students and teachers will work collaboratively with the Key 2 a Healthy Start team on community projects that will be focused on providing on-going technical assistance that will ultimately move the early childcare settings towards achieving best practices related to nutrition and physical activity in young children.
DATE: -
TEAM MEMBERS: Ann Chester
resource project Public Programs
This project specifically addresses the SMRB’s imperative that “NIH’s pre-college STEM activities need a rejuvenated integrated focus on biomedical workforce preparedness with special considerations for under-represented minorities.”

Approximately one-third of CityLab’s participants are under-represented minority (URM) students, but we now have a unique opportunity to build a program that will reach many URM students and position them for undergraduate STEM success. We have partnered with urban squash education organizations in Boston (SquashBusters) and New York (CitySquash and StreetSquash) that recruit URM/low SES students to participate in after-school squash training and academic enrichment programs. We have also partnered with the Squash + Education Alliance (previously named the National Urban Squash and Education Association) to disseminate the new program—first from Boston to New York and later through its national network of affiliated squash education programs.

In order to bring this project to fruition, Boston University is joining forces with Fordham University in New York. Fordham is home to CitySquash so these organizations provide an ideal base for the New York activities. The proposed project will enable us to demonstrate feasibility and replicability within the 5-year scope of this grant. Our shared vision is to develop a national model for informal precollege biomedical science education that can be infused into a myriad of similar athletic/academic enrichment programs.

The squash education movement for urban youth has been highly successful in enrolling program graduates in college. Since the academic offerings of the squash education programs focus on English Language Arts and Mathematics, their students struggle with science and rarely recognize the tremendous opportunities for long- term employment in STEM fields.

This project will bring CityLab’s resources to local squash programs in a coordinated and sustained engagement to introduce students to STEM, specifically the biomedical sciences. Together with the urban squash centers, we will build upon the hands-on life science experiences developed and widely disseminated by CityLab to create engaging laboratory-based experiences involving athletics and physiology.

The specific aims of the proposed project are:


To develop, implement, and evaluate a new partnership model for recruiting URM/low SES students and inspiring them to pursue careers in STEM; and
To examine changes in the science learner identities (SLI) of the students who participate in this program and establish this metric as a marker for continued engagement in STEM.


With the involvement of the two urban research universities, three local squash education programs, and SEA, we see this new SEPA initiative as a unique way to pilot, refine, and disseminate an after-school/informal science education program that can have a significant impact on the nation’s production of talented STEM graduates from URM/low SES backgrounds.
DATE: -
TEAM MEMBERS: Carl Franzblau Donald DeRosa Carla Romney
resource project Professional Development, Conferences, and Networks
This broadening participation project will focus on a regional workshop aimed at increasing Historically Black Colleges and Universities' (HBCUs) capacity to develop high quality proposals for future competitions of various programs in the Division of Research on Learning. The proposed effort will occur through three specific steps involving a: (1) pre-workshop webinar to introduce and lay the foundation for the opportunity; (2) full two-day workshop to engage participants in a rigorous grant-writing exercise; and (3) post workshop follow-up to provide ongoing support and proposal development guidance. Through a theory-driven process, the goal is to establish some degree of conformity for maximizing grant productivity around strategies and ideas shown to be effective in retaining students in the STEM pipeline.

The multi-tiered workshop will establish a launching pad for increasing attendees' capacity to build on prior knowledge and use best practices to improve future grant writing efforts. Specialized activities will help prepare HBCUs to increase their contributions to diversifying the future STEM workforce, support innovation and creativity in STEM fields, expand networking strategies, and promote opportunities to learn. Central to this capacity-building effort will be a focus on understanding the current research context and expectations for competitive participation in funding opportunities offered by NSF. This, in turn, will align with the Foundation's strategic direction for broadening participation in STEM through meaningful cutting-edge STEM education research. Resources from the workshop will be made available online to facilitate broader dissemination of information beneficial to HBCUs and other education institutions engaging in broadening participation efforts.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ivory Toldson
resource project Public Programs
Recognizing that race can influence African American youths' perception of which academic disciplines and careers are available to them, this pilot study will explore how African American youths' physical and social communities can be leveraged to support the evolution of their STEM identity and their ability to recognize their potential as scientists. Unfortunately, many of these youths live in communities that are void of critical resources that research has demonstrated time and time again are critical for success in STEM disciplines and careers. This lived reality for many African American youth is the direct result of long-standing disparities in access and opportunities, fueled by racial socialization and biased institutional structures. This pilot will empower youth to recognize these disparities and use science to provide solutions. One perilous societal disparity experienced in many predominately African American communities is the lack of access to fresh produce and healthy food. As a mechanism for potential resolution, this project will consider the utility of community gardens to address this important community need and as a strategy to engage youth in STEM content and skill development. While this notion is not novel to NSF, the intent to utilize an augmented reality (AR) storytelling platform for data collection and project experiences is innovative. This technology will also provide a space for participants to share their work with each other and their broader communities. To our knowledge, this pioneering approach has not been previously piloted in this context. In addition, the pilot will engage multiple youth serving community-based organizations such as park and recreation centers and faith-based organizations in this work, which is also innovative. This is significant, as youth serving community-based organizations are often play important role in the social, educational, and cultural lives of youth and their families in communities. These organizations are often at the heart of the community, figuratively and literally. If successful, this pilot could be transformative and provide a strong basis to support similar work in other communities.

Over the two-year project duration, eighty African American youth ages 11 -14 will participate in the year-long program, across three youth-serving, community-based organizations at four sites. They will be exposed to relevant agricultural, geological, engineering and technological content through a newly developed curriculum called "Cultivating My Curriculum." Community mentors and undergraduate role models will facilitate the instruction and hands-on experiences in the garden and with the AR platform. A capstone event will be a held for the participants and community to convene to learn more about the results of the pilot and share recommendations with community leaders for improving the disparities identified during the pilot. The research component will focus on: (a) the impact of the sociocultural theoretical framework grounding the work on youths' STEM identities, (b) the integration of the AR tool, and (c) mentorship. Formative and summative evaluation will take place through focus groups, surveys, journals, and youth storytelling. Ultimately, the project endeavors to advance the narrative that African Americans are scientists and that science can be used to improve the lives of African Americans and other groups challenged by structural and racial disparities.

This pilot study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harrison Pinckney David Boyer Barry Garst Dilrukshi Thavarajah
resource project Public Programs
Many of the Hispanic children and families who live in the Rio Grande Valley lack opportunities to engage in inspirational and educational experiences introducing Science, Technology, Engineering and Mathematics (STEM) concepts and related careers. The University of Texas, Rio Grande Valley (UTRGV) will adapt and research the "Energy and U Show," which will introduce thousands of children and families to an exciting and dramatic that shows interconverting different forms of energy. The show will meld the excitement of chemical demonstrations and the natural connection between energy and STEM education in a fully produced, on-stage science extravaganza. A foundational philosophy of the show is that there is additional real value in getting children and youth onto a college campus. For many of its participants, this is their first time sitting in a seat at a university, the first opportunity for them to envision themselves in this environment. In partnership with the University of Minnesota, which originally developed the show, UTRGV will adapt the show, now presented in English, to a bilingual, culturally accessible format that is designed to Hispanic family audiences and student groups in learning about energy and related careers. Evaluation results demonstrate that the show has effectively engaged thousands of Minnesota students. The target audience will be upper elementary (4th-5th grade), middle school students, and their parents. This project will be led by UTRGV, nation's second-largest Hispanic Serving Institution, with a student enrollment of 28,000, of which over 90% are Hispanic and more than 60% are first-generation college students). In addition to the show, the project will include: (1) a manual to guide implementation of the program and related resources at different national or international venues; (2) educational resources for parents, teachers and school counselors introducing STEM careers and specific STEM college majors; (3) mentoring of UTRGV faculty in outreach activities; and (4) dissemination of the show to other campuses and venues.

The project will conduct ongoing research and evaluation guiding the adaptation of the show and investigation of factors contributing to positive educational impacts of the project, which will be carried out by a bilingual/bicultural researcher. Project research instruments will measure student level of engagement, interest and learning, as well as college interest, in surveys and analysis of data pre and post demonstration. The project will specifically investigate the impact of language on student impacts. Each component of this project will be studied to determine program intervention effectiveness (the scientific demonstration and language of the demonstration). To determine program effectiveness, a baseline of data before program implementation will be established concerning Hispanic students, their persistence, and perceptions of the environment. The project will measure parent perceptions of STEM careers for their children through pre and post demonstration surveys and focus groups. Student and parent research participants will be able to use surveys or respond to other research activities in the language of their choice. Project findings will contribute to the knowledge base concerning how linguistically and culturally adapted science shows and related resources adapted into can have positive impacts regarding the STEM knowledge and careers of students and parents from low-income and Hispanic communities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Karen Lozano Arturo Fuentes Aaron Massari Brian Warren
resource project Public Programs
Mentoring is a widely accepted strategy for supporting positive socioemotional and cognitive development across a variety of sectors including education, workforce development, and the justice system. An estimated 2.5 million volunteer mentors support youth development in the United States each year. However, there is broad concern that practice has outpaced empirical testing, with significant gaps in the research literature on important modifiers of mentoring relationships and their impacts. This is especially true for mentoring youth ages 10-14 in STEM. Studying highly successful programs may be one way to better understand the role of mentoring and moderators of mentoring effectiveness. The Science Club, a community-based STEM mentoring program for middle-grade youth in the Chicago area, will provide multiple sites for a research study to examine three important issues for advancing theory and practice for STEM mentoring. These issues include (1) understanding STEM mentoring for youth in the middle grades, (2) identifying outcomes and motivations for scientist mentors to more fully participate in mentoring programs, and (3) examining a model of middle-school-focused STEM mentoring collaboration.

Through a series of three studies, the team will investigate which elements of the mentoring relationships are associated with the demonstrated STEM identity gains in youth participants. The work will also contribute much-needed data on the impact of STEM mentoring relationships on the mentors themselves. Study 1 is designed as a retrospective study of program alumni, both youth and mentors, about the nature and extent of each their STEM identity shifts during their time in Science Club. A purposeful sample of 160+ youth and 100+ mentor alumni will participate. Study 2 is a prospective study of three consecutive cohorts of active Science Club participants, built on data and findings from Study 1. In Study 2, the team will design and implement a new Identity-Focused Mentoring Observation Instrument specifically aimed at exploring the nature and quality of mentoring relationships and their role in science identity development longitudinally. Three independent cohorts of 40 youth and 20 mentors each will participate. Study 3 is retrospective, examining how participating individuals and organizations perceive and are impacted by mentoring. The three studies employ a mixed methods approach utilizing surveys, observations, individual interviews, and document review.

This proposal will fill critical gaps in the mentoring literature regarding the formative middle school years through novel, empirical research. Building on the current literature and practice, outcomes of the work will inform practice and enhance knowledge-building in the field on both mentoring relationships and the collective impact of university-school-OST partnerships.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Rabiah Mayas Bernadette Sanchez
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Public Programs
Addressing Societal Challenges through STEM (ASCs) received NSF AISL funding to conduct a Literature Review and Synthesis to answer the question: How are informal learning institutions advancing the use of STEM knowledge and scientific reasoning in the ways that individuals, families, and communities understand what they can do, and apply their learning to solving the societal challenges of our time? Using a definition of societal challenges based on research around the public understanding of social problems, this systematic literature review will identify, analyze, and synthesize three bodies of peer and field-reviewed literature (peer-reviewed journals, graduate theses, and evaluation reports of nationally-funded project).

Over the past decade, Informal STEM learning organizations have increasingly engaged in innovative ways to present STEM knowledge within the context of societal challenges such as climate change, energy sources, cyber-security, Nanotechnologies, coastal resilience, and other topics. These efforts significantly expand the traditional work of Informal STEM Learning (ISL) organizations, often leading to new types of interventions, partnerships, impacts, and assessment tools. Analyzing and interpreting the aggregate of this work will advance theoretical and practical knowledge about the potential of ISL’s in advancing the place of STEM in addressing societal challenges.

Demonstrating and articulating the characteristics of how ISL organizations are addressing societal challenges, encourages and informs the ways institutions can address the NSF strategic goal to “Advance the capability of the Nation to meet current and future challenges.” The project outputs aim to Enhance Knowledge-building, Build Capacity of the Field, and Maximize Strategic Impact by informing the strategies used by organizations and individuals. The results also aim to Broaden Participation by articulating the ways STEM knowledge is embedded and linked to personal experiences and choices.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Public Programs
Consideration of the needs of individuals with a wide range of disabilities is not always considered in the early design stages of an informal STEM learning (ISL) activity or program. The primary access approach for people with disabilities becomes the provision of accommodations once the ISL product or environment is created. In contrast, the Universal Design approach considers users with a wide range of characteristics throughout the design process and works to create products and environments that are accessible, usable, and inclusive. This project, called AccessISL, led by the University of Washington's DO-IT (Disabilities, Opportunities, Internetworking and Technology) Center and Museology Program, includes an academic museology program and local ISL sites, representing museums, zoos, aquariums, makerspaces, science centers, and other sites of informal STEM learning. Insights will be gained through the engagement of people with disabilities, museology graduate students and faculty, and ISL practitioners. The AccessISL project model, composed of a set of approaches and interventions, builds on existing research and theory in the fields of education science, change management, effective ISL practices, and inclusive design processes. The project will collect evidence of policies and practices (or lack thereof) that improve the inclusiveness of ISL with respect to a wide range of disabilities and considers approaches for the design and development of new strategies; explores what stakeholders need to make change happen; uncovers challenges to the adoption of inclusive practices in public ISL settings and explores ways to overcome them; and proposes relevant content that might be included in museology curriculum. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project addresses the following two objectives:


For ISL personnel and museology faculty: to increase knowledge, skills, and actions to make ISL programs, facilities, courses, and resources more welcoming and accessible to participants with disabilities and embed relevant practices within their work.
For postsecondary STEM students with disabilities and museology students: to increase knowledge and skills in advocating for ISL offerings that are welcoming and accessible to everyone, including those with a wide variety of disabilities, and to encourage individuals with disabilities to pursue careers in ISL.


The project employs a student-centered approach and a set of practices that embrace the social model of disability, social justice education, disability as a diversity issue, intersectionality, and Universal Design. A leadership team of interns--each member a STEM student with a disability or a museology graduate student--along with project staff will engage with the University of Washington's Museology Program to identify and implement strategies for making ISL activities and courses more welcoming and accessible to individuals with disabilities. An online community of practice will be developed from project partners and others nationwide. A one-day capacity building institute will be held to include presentations, student/personnel panels for sharing project and related experiences, and group discussions to explore issues and further identify systemic changes to make ISL programs more welcoming and accessible to individuals with disabilities. As prototypes of the AccessISL Model are developed, evaluation activities will primarily be formative (looking for strengths and weaknesses) and remedial (identifying/implementing changes that could be made to improve the model). The model will continue to be fine-tuned through formative evaluation. Evaluation of the model components will focus on the experience of a range of stakeholders in the project. Specifically, quantitative data collected will include levels and quality of engagement, accessibility recommendations and products developed, and delivery of ISL services. Qualitative data will be collected through observations, surveys, focus groups, interviews, and case studies.

AccessISL project products will include proceedings of an end-of-project capacity building institute, promising practices, case studies, a video, and other online resources to help ISL practitioners and museology faculty that will result in making future ISL opportunities more inclusive of people with disabilities. AccessISL will advance knowledge and ensure long-term impact using multiple strategies:


broadening the STEM participation of people with disabilities as well as women, racial/ethnic minorities, and other underrepresented groups through the application of universal design
strengthening associations and creating synergy and durable relationships among stakeholders,
encouraging teaching about disability, accessibility, and universal design in museology courses,
empowering students with disabilities and current and future ISL practitioners to advocate for accessible ISL and develops an infrastructure to promote accessible ISL programs nationwide, and
contributing to the body of promising practices with products that will (a) enhance understanding of issues related to the inclusion of people with disabilities in ISL programs and (b) promote inclusive practices.


Outcomes will benefit society by making STEM opportunities available to more people and enhancing STEM fields with the talents and perspectives of people with disabilities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sheryl Burgstahler Meena Selvakumar