Skip to main content

Community Repository Search Results

resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
resource project Public Programs
This workshop is funded through the "Dear Colleague Letter: Principles for the Design of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments (NSF 18-017)." In today's educational climate, organizations are creating physical learning spaces for hands-on STEM activities, often called makerspaces, co-working spaces, innovation labs, or fablabs. These spaces have evolved to be interdisciplinary centers that personalize learning for individual, diverse learners in collaborative settings. When designed well, these physical spaces create communities that contextualize learning around participants' goals and thus address STEM learning in a dynamic and integrated way. Participation in these learning environments encourages the cultivation of STEM identities for young people and can positively direct their career trajectories into STEM fields. This workshop will bring together a community of collaborators from multiple stakeholder groups including academia, public libraries, museums, community based organizations, non-profits, media makers and distribution channels, and educators within and beyond K-12 schools. Led by the University of Arizona, and held at Biosphere 2, an international research facility, participants will engage in activities that invite experimentation with distributed learning technologies to examine ways to adapt learning to the changing technological landscape and create robust, dynamic online learning environments. The workshop will culminate in a synthesis of design principles, assessment approaches, and tools that will be shared widely. Partnerships arising from the workshop will pave the way for sustained efforts in this area that span research and practice communities. Outcomes will address research and development of the next generation of digitally distributed learning environments.

The three day workshop convening will provide a unique forum to (1) exchange innovative ideas and share challenges and opportunities, (2) connect practical and research-based expertise and (3) form cross-institutional and cross-community partnerships that envision, propose, and implement opportunities for collecting and analyzing data to systematically inform the collective understanding. Participation-based activities will include design-based experiences, participatory activities, demonstrations of works in progress, prototyping, creative pitching, practitioner lightning talks, small group breakouts, hands-on design activities, and an 'unconference' style synthesis of bold ideas. Participants will be invited to experiment with distributed learning technologies. Five focus areas for the workshop include (1) inclusivity of learning spaces that invite multiple perspectives and full participation, (2) documenting learning in ways that are linked to outcomes and impacts for all learners, (3) implementing the use of new technologies in diverse settings, such as the workforce, (4) interpersonal interactions and peer-to-peer learning that may encourage a STEM career-path, and, (5) methods for collecting and analyzing data at the intersection of people, the learning environment, and new technologies at multiple levels. Outcomes of the workshop will serve to advance knowledge regarding critical gaps and opportunities and identify and characterize models of collaboration, networking, and innovation that operate within and across studio-based STEM learning environments.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Jill Castek Leslie Sult Jennifer Nichols Kevin Bonine Blaine Smith
resource research Public Programs
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS: Jill Castek Michelle Schira Hagerman Rebecca Woodland
resource research Public Programs
Providing an original framework for the study of makerspaces in a literacy context, this book bridges the scholarship of literacy studies and STEM and offers a window into the practices that makers learn and interact with. Tucker-Raymond and Gravel define and illustrate five key STEM literacies—identifying, organizing, and integrating information; creating and traversing representations; communicating with others for help and feedback during making; documenting processes; and communicating finished products—and demonstrate how these literacies intersect with making communities.
DATE:
resource research Public Programs
In this article we explore how activity design and learning contexts can influence youth failure mindsets through a case study of five youth who described failure as sometimes a good thing and sometimes a bad thing (a perspective we characterize as Failure as Mosaic, described in the article). These youth and their descriptions of failure-positive and failure-negative experiences offer a unique opportunity to identify how experiences can be designed to support learning and persistence. In order to understand differing views of failure among youth, we researched the following questions:
DATE:
resource project Public Programs
This three-year research and implementation project empowers middle school LatinX youth to employ their own assets and funds of knowledge to solve community problems through engineering. Only 7% of adults in the STEM job cluster are of Hispanic/Latino origin. There is a continuing need for filling engineering jobs in our current and future economy. This project will significantly broaden participation of LatinX youth in engineering activities at a critical point as they make career decisions. Design Squad Global LatinX expands on a tested model previously funded by NSF and shown to be successful. It will enable LatinX youth to view themselves as designers and engineers and to build from their strengths to expand their skills and participation in science and engineering. The project goals are to: 1) develop an innovative inclusive approach to informal engineering education for LatinX students that can broaden their engineering participation and that of other underrepresented groups, (2) to galvanize collaborations across diverse local, national, and international stakeholders to create a STEM learning ecosystem and (3) to advance knowledge about a STEM pedagogy that bridges personal-cultural identity and experience with engineering knowledge and skills. Project deliverables include a conceptual framework for a strength-based approach to engineering education for LatinX youth, a program model that is asset based, a collection of educational resources including a club guide for how to scaffold culturally responsive engineering challenge activities, an online training course for club leaders, and a mentoring strategy for university engineering students working with middle school youth. Project partners include the global education organization, iEARN, the Society of Women Engineers, and various University engineering programs.

The research study will employ an experimental study design to evaluate the impact on youth participating in the Design Squad LatinX programs. The key research questions are (1) Does participation increase students' positive perceptions of themselves and understanding of engineering and global perspectives? (2) To what extent do changes in understanding engineering vary by community (site) and by student characteristics (age, gender, ethnicity)? (3) Do educators and club leaders increase their positive perceptions of youths' funds of knowledge and their own understanding of engineering? and (4) Do university mentors increase their ability to lead informal engineering/STEM education with middle school youth? A sample from 72 local Design Squad LatinX clubs with an enrollment of 10-15 students will be drawn with half randomly assigned to the participant condition and half to the control condition. Methods used include pre and post surveys, implementation logs for checks on program implementation, site visits to carry out observations, focus groups with students and interviews with adult leaders. Data will be analyzed by estimating hierarchical linear models with observations. In addition, in-situ ethnographically-oriented observations as well as interviews at two sites will be used to develop qualitative case studies.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Mary Haggerty
resource project Public Programs
Informal learning institutions, such as science centers and museums, are well-positioned to broaden participation in engineering pathways by providing children from underrepresented groups with motivational, self-directed engineering design experiences. Though many informal learning institutions offer opportunities for young visitors to engage in engineering activities, little is known about the specific features of these activities that support children's motivation in engineering design processes such as problem scoping, testing, and iteration. This project will address this gap and advance foundational knowledge by identifying features of engineering design activities, as implemented within an informal setting, which support underrepresented children's engineering motivation and persistence in engineering tasks. Researchers at New York Hall of Science (NYSCI) will observe children interacting with families and museum educators as they engage in different engineering design activities in NYSCI's Design Lab, an exhibition space devoted to hands-on exploration of engineering design. They will also survey and interview the children and their caregivers about these experiences. Analyses of these data sources will result in a description of features of design activities foster motivation and task persistence in engineering design. Findings will be disseminated nationally to other informal learning institutions, which in turn can use the knowledge generated from this project to create motivational, research-based, field-tested engineering design experiences for young visitors, especially for children from underrepresented groups. The experiences may encourage children to further pursue engineering pathways, resulting in a diversified engineering workforce with the potential to drive and sustain national innovation and global technological leadership.

This project uses the framework of goal orientation, defined as learners' self-reflection of why and how they engage in tasks, to understand whether, how, and why underrepresented 7-12-year-olds engage in engineering design activities in an informal learning institution. Though previous research has suggested that goal orientation is strongly, positively related to learning and motivation in formal settings such as schools, research in informal settings has not robustly accounted for the role of goal orientation in participants' engagement with learning tasks in these unique learning environments. To better understand how children's goal orientations contribute to their motivation in engineering in informal learning institutions, researchers will answer the following research questions: (1) What are underrepresented children's goals and goal orientations while participating in engineering design activities in an informal setting? (2) What contextual factors--including facilitation strategies, materials, task relevance, and social interactions with family members--may support or discourage the adoption of different goal orientations? (3) How do goal orientations relate to children's learning experience in the engineering design activities and the likelihood that they will test and iterate their solutions? These questions will be answered through a mixed-method research study conducted with approximately 200 families, with children aged 7-12, recruited from underrepresented groups. Semi-structured clinical interviews, conducted with 20% of the children and their caregivers, as well as observations and surveys gathered from all families, will provide information on the children's goal orientation and engagement as they relate to specific engineering design activities. Qualitative content analyses and multilevel structural equation modeling will result in findings that will be disseminated widely to other institutions of informal learning. Ultimately, this project will generate new empirical knowledge regarding the features of engineering design activities in informal learning environments that increase engineering engagement and motivation among underrepresented children, thereby broadening participation in engineering pathways.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: ChangChia James Liu Dorothy Bennett Katherine Culp
resource project Public Programs
The project will develop and research the ways in which maker education activities can be leveraged to support intergenerational learning in hyper-vulnerable populations, such as families with an incarcerated parent. Maker education is often linked to STEM learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. Research has shown that maker education activities support STEM learning and creativity, the development of STEM identities and dispositions, and create pathways towards STEM careers. The project will develop a series of project activities including bringing Science, Technology, Engineering, and Mathematics (STEM) learning experts to a women's minimum-security facility for lectures on research and a set of workshops exploring maker activities for the incarcerated women and their children. By researching trauma-informed maker practices for families with an incarcerated parent, the project will develop research findings related to and practical resources for supporting these practices in other informal STEM learning contexts.

While evidence shows that maker pedagogy can be effective in supporting STEM learning for diverse populations, little is known about how it might support STEM learning for incarcerated women and their children. The project will investigate: (1) the everyday STEM practices of incarcerated women and their children and how these practices can be supported and extended through maker activities; (2) how incarcerated women and their children are perceived with respect to STEM and the impact these perceptions have on developing STEM identities; and (3) what design principles for developing STEM learning emerge through the project research. Program activities and related research will be designed and researched through the collaboration of incarcerated women, university researchers from the project university partners, the Saint Louis University Prison Program, and the Federal Correctional Institution-Camp (Greenville Women's Minimum Security Facility). The project will use Social Design Experimentation (SDE) as the primary research method, which is used to design and study education interventions on site. SDE is unique in that participants, researchers and other stakeholders collaborate to meet the goals of the project and related research. Project deliverables, which will be widely disseminated to researchers and educators, will include articles in peer-reviewed and educator publications, strategies and design principles for developing maker education opportunities for hyper-vulnerable populations, and practical recommendations for a maker kit to facilitate STEM maker education activities and family interaction.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Cynthia Graville
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource research Public Programs
We examined the conversational reflections of 248 families with 6–11‐year‐old children shortly after they visited a tinkering exhibit. Our aim was to understand the conditions of tinkering and conversational reflection that can enhance STEM learning opportunities for young children. We discuss implications for the design of tinkering and reflection activities that can both reveal and advance STEM learning.
DATE:
TEAM MEMBERS: Lauren Pagano Catherine Haden David Uttal Tsivia Cohen
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will develop and research, as a feasibility study, a series of art-inclusive, pop-up Science, Art, Technology, Engineering, and Mathematics (STEAM) makerspaces in a high-poverty, primarily rural county in Oklahoma. A makerspace is a collaborative work space inside a library, school or other community space for making, learning, exploring and sharing that uses high tech to low tech tools. The makerspaces will be temporary workshops that are developed through a community planning process that assesses the needs and interests of citizen stakeholders. Scientists, artists and other experts will work together with the community to design a series of thematic pop-up makerspace sessions. The project builds a collaborative infrastructure and capacity for small and rural communities by bringing together resource providers and experts to identify and design science-oriented challenges. Long-term benefits for participants include sustained focus on new approaches for civic engagement through STEAM-driven making which could foster new role identities pertaining to science and art. The project deliverables include: (1) a theoretically informed model to build a community's capacity to collaborate toward fostering civic engagement through science-oriented pop-up makerspaces, (2) Pop-Up STEAM Studio makerspaces, (3) training for pop-up facilitators, and (4) visual documentation panels and web-based digital stories to communicate progress and process.

Project research will enhance knowledge-building of the process of developing a science-oriented community challenge that embraces STEAM and making. A key contribution of the proposed project will be the generation of insights into how community members establish consensus around the joint goal of designing, documenting, and facilitating integrated art and science making activities to address and communicate the challenge. Research will focus on the roles participants take when engaging in the making process through an identity-based model of motivated action. Analysis of advisory board meeting artifacts and focus group data will allow the researchers to identify processes of negotiation and consensus building at the collective level and in relation to each issue to which the group attends. Emergent themes (such as negotiation, shared learning, idea or project revisions, diverse perspectives coming to consensus, etc.) will be examined across individual and group units of analysis, from all data sources, and through the congruent theoretical lenses of role identity theory and negotiated learning pedagogy. The research outcomes should inform efforts to build infrastructure and capacity of community resources by providing a model for developing collaborative pop-up makerspaces.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sheri Vasinda Joanna Garner Stephanie Hathcock Rebecca Brienen
resource project Public Programs
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will conduct a feasibility study of an informal youth STEM learning program. High school students from under served communities in New York City will use existing historical, cultural and environmental data to investigate selected UNESCO World Heritage sites. Participants will apply the skills and knowledge they have developed from their analysis of the UNESCO sites and apply them to their local communities. Participants will identify, map, and analyze their own community heritage sites, using relevant citizen science, environmental and cultural data. Throughout the program, the project will involve participants in maker-related activities. Participants will design devices to collect data, explore variables through model making, and communicate findings through models and artistic forms with the to spur both individual and community action for selected heritage sites.

The project will be implemented as a 9-month weekly after school program in Long Island City, New York. Most students from the school will be from low-income families and are youth of color. The research the question for the study is "How does access to STEM increase for historically underrepresented youth populations when culturally relevant curriculum connects citizen science and making practices?" During the first phase of the program, participants will engage with core STEM concepts and making/design processes through an engaging curriculum that explores damaged UNESCO World Heritage Sites. During the second phase, youth will identify, map, and plan enhancements for their own community heritage sites or environmental landmarks. A condensed version of the program will be piloted in the summer with youth from across the city. The Educational Development Corporation will conduct a process and summative evaluation of the project. Process evaluation, which will provide ongoing feedback to the project team, will include document review, observation of program implementation, and interviews with project partners. Summative evaluation will continue these methods, supplemented by pre- and post-participation participant surveys and focus-groups. Validated survey instruments, such as the Growth Mindset Scale, and the Common Instrument Suite (PEAR Institute) will be used. Resources from research and program practices will be disseminated through publications and conference presentations to the education research community, global learning and design fields, and practitioners from after school and other informal learning environments. Participants will share project results with their communities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
TEAM MEMBERS: Elizabeth Bishop Tracy Hogan