Skip to main content

Community Repository Search Results

resource project
iPlan: A Flexible Platform for Exploring Complex Land-Use Issues in Local Contexts
DATE: -
TEAM MEMBERS:
resource project Public Programs
Zoo New England will bring a turtle conservation education program into 14 fifth grade classrooms in the Boston public schools and the Perkins School for the Blind. The Hatchling and Turtle Conservation Headstarting Program is designed to expose students from a diverse range of socio-economic backgrounds to the importance of wildlife in their community, giving them an opportunity to participate in a hands-on conservation project. Each classroom will receive three indoor sessions and one field trip at the end of the year, as well as two turtle hatchlings to raise in the classroom. Teachers will be trained to raise and care for the turtles. Presentations will be tailored to the age group of the students and will include opportunities for hands-on STEM-inquiry-based learning in alignment with the Massachusetts Science and Technology/Engineering Curriculum Frameworks. Pre and post classroom and field trip evaluation will be conducted to assess the cognitive and attitudinal changes among participating students and teachers.
DATE: -
TEAM MEMBERS: Emilie Wilder
resource project Public Programs
The L.C. Bates Museum will deliver STEAM programming to neighboring rural, mostly low-income second grade children and their families through the Observing Ornithology science project. Over a two-year period, the museum will work with 40 teachers in 12 schools to support student learning tied to Next Generation core science performance measures. The project activities will use museum collections and other resources to present a series of three ornithology programs designed to motivate curiosity and engage children in observation activities that support a new approach to thinking, analyzing and solving. The museum will loan a new pop-up display to each of the 12 school libraries and will present four family and four children's museum bird days at the museum for participating students and their families during each year of the project. An external evaluator will measure the project's success in achieving defined performance measures that include strengthening the children's knowledge, understanding, and attitude toward the regional environment.
DATE: -
TEAM MEMBERS: Deborah Staber
resource project Public Programs
This is an NSF Postdoctoral Research Fellowship in Biology, under the program Broadening Participation of Groups Under-represented in Biology. The fellow, Robert Habig, is conducting research and receiving training that is increasing the participation of groups underrepresented in biology. The fellow is being mentored by David Lahti at Queens College, City University of New York. The goal of the fellow's project is to perform a comparative evolutionary analysis of nest construction in the weaverbirds (Ploceus spp.). The evolutionary history of behavior can be nearly intractable and resistant to quantitative analysis. One strategy for illuminating our understanding of behavioral evolution is to conduct comparative studies of animal architectures, such as nests. Unlike behaviors themselves, nests persist through time, and have structures that can be disassociated into several quantitative features, which permits easy and comparable measurements and allows scientists to address questions about evolutionary history and functional relevance. The fellow's research addresses two major questions: (1) How do patterns of nest construction vary within and between species? (2) How do interrelated evolutionary processes shape variation in nest structure? This project is important for advancing foundational scientific knowledge, and will be the first study of weavers incorporating both molecular data and nest morphology to better understand the evolutionary underpinnings of a complex behavioral process. The fellow is also broadening participation in science by mentoring students underrepresented in biology.

The Fellow will reconstruct the evolution of nest construction in Ploceus weaverbirds incorporating advanced phylogenetic and morphological techniques including bioinformatics, computer modeling, X-ray computed tomography, and image processing. The Fellow will also conduct fieldwork in two hotspots of weaverbird diversity, the Awash Valley in Ethiopia and the Limpopo Province of South Africa, and collect behavioral data (e.g. rates of predation and brood parasitism; mating and parental behavior) and morphological data (e.g. nest structure) to test hypotheses of how distinct types of evolutionary selection shape the evolution of nest construction. The proposed comparative study can thus address questions such as how rapidly certain nest structural features evolve, which features are ancestral versus derived, which tend to exhibit phylogenetic signal, and which evolve in response to environmental features. The Fellow is receiving training in three-dimensional morphological analyses, phylogenetic tree construction, bioinformatics, computer modeling, and mentoring skills. The plan to broaden participation includes (1) recruitment, training, and mentoring of Queens College students from underrepresented groups in biology; (2) designing an evolutionary biology curriculum that ties in the research of the fellowship; (3) teaching an evolutionary biology class to underrepresented middle and high school students at the American Museum of Natural History; and (4) facilitating a research team for middle school and high school students.
DATE: -
TEAM MEMBERS: Bobby Habig
resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource project Exhibitions
Planning for the reinterpretation of the museum’s Egyptian collection that would explore the intersection of human and natural histories in ancient Egypt.

Building on Carnegie Museum of Natural History’s (CMNH) current NEH Digital Projects for the Public Discovery Grant, this exhibition grant will allow CMNH to begin planning for its multi-phase exhibition, Egypt on the Nile. As part of the project, CMNH will: convene a team of expert scholars and scientists to refine current research themes and generate new humanities and scientific knowledge through which the public can connect their contemporary experiences with the human and natural history of ancient Egypt; form and consult a community focus group for audience input; identify anthropological and natural sciences collections for the exhibition; and evaluate CMNH exhibitions, conservation, and storage considerations and costs. To carry out these goals, the Project Director will lead committees in a series of meetings and two workshops held in Pittsburgh to produce exhibition designs and a draft script along with plans for outreach, marketing, and evaluation of the final exhibition.
DATE: -
TEAM MEMBERS: Erin Peters
resource project Public Programs
Biology has become a powerful and revolutionary technology, uniquely poised to transform and propel innovation in the near future. The skills, tools, and implications of using living systems to engineer innovative solutions to human health and global challenges, however, are still largely foreign and inaccessible to the general public. The life sciences need new ways of effectively engaging diverse audiences in these complex and powerful fields. Bio-Tinkering Playground will leverage a longtime partnership between the Stanford University Department of Genetics and The Tech Museum of Innovation to explore and develop one such powerful new approach.

The objective of Bio-Tinkering Playground is to create and test a groundbreaking type of museum space: a DIY community biology lab and bio-makerspace, complete with a unique repertoire of hands-on experiences. We will tackle the challenge of developing both open-ended bio-making activities and more scaffolded ones that, together, start to do for biology, biotech, and living systems what today’s makerspaces have done for engineering.

A combined Design Challenge Learning, making, and tinkering approach was chosen because of its demonstrated effectiveness at fostering confidence, creative capacity, and problem solving skills as well as engaging participants of diverse backgrounds. This educational model can potentially better keep pace with the emerging and quickly evolving landscape of biotech to better prepare young people for STEM careers and build the next generation of biotech and biomedical innovators.

Experience development will be conducted using an iterative design process that incorporates prototyping and formative evaluation to land on a final cohort of novel, highly-vetted Bio-Tinkering Playground experience. In the end, the project will generate a wealth of resources and learnings to share with the broader science education field. Thus, the impacts of our foundational work can extend well beyond the walls of The Tech as we enable other educators and public institutions around the world to replicate our model for engagement with biology.
DATE: -
TEAM MEMBERS: Anja Scholze
resource project Media and Technology
The New York Hall of Science (NYSCI) will develop, test, market, and disseminate an interactive graphic novel iBook that will use the interests of young people (ages 10–14) in animals and comics to engage them in learning about health and clinical research. Provisionally called “Transmission: Astonishing Tales of Human-Animal Diseases,” the project represents a new approach to engaging young people in biomedical science learning.

Graphic novels are one of the fastest growing categories in publishing and bookselling, and today, they are significantly more sophisticated than the comics that came before them. They are also enormously popular among young people. The proposed graphic novel iBook will focus on the diseases that humans and animals share and pass between them (sometimes to devastating consequences), from Ebola, bird flu, and West Nile disease to influenza, measles, and pneumonia. Moreover, like many other contemporary graphic novels, it will address a pressing issue of the day—amely, the growth of zoonotic and anthropozoonotic diseases.

The iBook will be developed in a digital, interactive format (a growing trend within the genre) and, like many graphic novel titles, will take a mystery and forensic crime approach to exploring its content. Ultimately, Transmission will become a national model for conveying biomedical understanding through the use of up-to-the-minute interactive iBook technologies and an engaging graphic novel format.
DATE: -
TEAM MEMBERS: martin weiss Geralyn Abinader
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource project Public Programs
This research in service to practice project will examine the impact of a 12-year statewide science field trip program called LabVenture. This hands-on program in discovery and inquiry brings middle school students and teachers across the State of Maine to the Gulf of Maine Research Institute (GMRI) in Portland, Maine to become fully immersed in explorations into the complexities of local marine science ecosystems. These intensive field trip experiences are led by informal educators and facilitated entirely within informal contexts at GMRI. Approximately 70% of all fifth and sixth grade students in Maine participate in the program each year and more than 120,000 students have attended since the program's inception in 2005. Unfortunately, little is known to date on how the program has influenced practice and learning ecosystems within formal, informal, and community contexts. As such, this research in service to practice project will employ an innovative research approach to understand and advance knowledge on the short and long-term impacts of the program within different contexts. If proven effective, the LabVenture program will elucidate the potential benefits of a large-scale field trip program implemented systemically across a community over time and serve as a reputable model for statewide adoption of similar programs seeking innovative strategies to connect formal and informal science learning to achieve notable positive shifts in their local, statewide, or regional STEM learning ecosystems.

Over the four-year project duration, the project will reach all 16 counties in the State of Maine. The research design includes a multi-step, multi-method approach to gain insight on the primary research questions. The initial research will focus on extant data and retrospective data sources codified over the 12-year history of the program. The research will then be expanded to garner prospective data on current participating students, teachers, and informal educators. Finally, a community study will be conducted to understand the potential broader impacts of the program. Each phase of the research will consider the following overarching research questions are: (1) How do formal and informal practitioners perceive the value and purposes of the field trip program and field trip experiences more broadly (field trip ontology)? (2) To what degree do short-term field trip experiences in informal contexts effect cognitive and affective outcomes for students? (3) How are community characteristics (e.g., population, distance from GMRI, proximity to the coast) related to ongoing engagement with the field trip program? (4) What are aspects of the ongoing field trip program that might embed it as an integral element of community culture (e.g., community awareness of a shared social experience)? (5) To what degree does a field trip experience that is shared by schools across a state lead to a traceable change that can be measured for those who participated and across the broader community? and (6) In what ways, if at all, can a field trip experience that occurs in informal contexts have an influence on the larger learning ecosystem (e.g., the Maine education system)? Each phase of the research will be led by a team of researchers with the requisite expertise in the methodologies and contexts required to carry out that particular aspect of the research (i.e., retrospective study, prospective study, community study). In addition, evaluation and practitioner panels of experts will provide expertise and guidance on the research, evaluation, and project implementation. The project will culminate with a practitioner convening, to share project findings more broadly with formal and informal practitioners, and promote transfer from research to practice. Additional dissemination strategies include conferences, network meetings, and peer-reviewed publications.

The potential insights this research could garner on intersectionality between formal and informal STEM learning are substantial. As a consequence, this project is co-funded by the Advancing Informal STEM Learning (AISL) and Discovery Research K-12 (DRK-12) Programs. The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. Likewise, the Discovery Research-K12 Program seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
This project develops and examines place-based learning using mobile augmented reality experiences for rural families where museums and science centers are scarce yet where natural resources are rich with outdoor trails, parks, and forestlands. The collaborative research team, with members from rural libraries, outdoor learning centers, learning scientists at Penn State University, and rural communities in Pennsylvania, will develop augmented reality and mobile learning resources for families and children aged from 4 to 12. The goal is to help people see what is not visible in real-time in order to learn about life and earth sciences based on local watersheds, trees, and seasonal cycles that are familiar and relevant to rural communities. To accomplish this goal, the project team will create scientifically meaningful experiences for rural families and children in their out-of-school time through three iterations of research and design. Although there is evidence that augmented reality can support learning, little empirical research has been conducted to determine what makes one type of augmented learning experience more effective than others in outdoor learning spaces. This project will produce research findings on the utility of augmented reality for science learning with families and youths outdoors. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants

Through a four-year design-based research study, researchers will investigate three research questions. (1) How can outdoor learning experiences be enhanced with augmented reality and digital resources in ways that make science more visible and interesting?; (2) How do different forms of augmentations on trails and in gardens support science learning? 3) What social roles do children and parents play in supporting each other's science learning and connections to rural communities? Data collection includes video-recordings of children and families in the outdoors, learning analytics of people's behavior, and interviews with rural families. The project's research design will allow for the development of theory, which supports rural families learning science within and about their communities. At the end of the project, the team will offer generalizable design principles for technologically-enhanced informal learning for outdoor displays, gardens, and trails.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Heather Toomey Zimmerman Susan Land
resource project Media and Technology
Explore the Science of Spring: A Live Media Event is an Innovations in Development project produced by the signature PBS series Nature. The new primetime series Spring LIVE (working title) will break the frame of a traditional documentary, letting viewers themselves explore the dramatic seasonal changes of spring through the immediacy of live television. On-camera hosts, scientists and naturalists in locations across the U.S., and scores of citizen scientists will use observation and scientific inquiry to explore the workings of nature during this season of rebirth. The unfolding stories of seasonal change will illuminate larger scientific insights--into the biodiversity of species in habitats, the interconnectedness of plants and animals in diverse ecosystems, the global phenomenon of species migration, and how spring "green-up" can be affected by environmental change--while inspiring appreciation for species conservation and habitat preservation. Spring LIVE is conceived as an ongoing series, with this inaugural season composed of three one-hour programs broadcast live on three consecutive nights, along with real-time interactions via Facebook. Reaching long-standing Nature viewers (2.5 million per episode), Spring LIVE will seek to turn mature adults and diverse families into citizen science doers, and leverage younger Nature online audiences through social media and community engagement in partnership with citizen science projects.

Spring LIVE will build public knowledge of and engagement in phenology and citizen science. The project will also conduct knowledge-building research on the effectiveness of Facebook as a science learning tool. It will experiment with eliciting audience participation via Facebook within the live shows to generate synchronous, second-screen thought and discussion. An exploratory study by Multimedia Research will look at the impact of this feature, addressing the question: To what extent and how does Facebook interactivity within live science shows impact adult engagement, learning and motivation? Spring LIVE will also engage multiple partners to expand reach and impact and build capacity in their fields. National partners include the National Park Service and Next Avenue; citizen science partners include Celebrate Urban Birds, National Phenology Network, Monarch Blitz, and SciStarter, among others. PBS stations will work with these organizations to involve diverse, intergenerational audiences in observation of nature and seasonal change. Project evaluation, implemented by Knight Williams Research Communications, will focus on the impact of live television on science learning, and the success of the integration of citizen science projects on air, online, and in communities. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Fred Kaufman