Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
This is the final evaluation report for the Skynet Junior Scholars Project from the External Evaluator, David Beer.
DATE:
TEAM MEMBERS: Sue Ann Heatherly David Beer
resource project Public Programs
A partnership between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods.
DATE: -
TEAM MEMBERS: Douglas Arion
resource project Media and Technology
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
DATE: -
TEAM MEMBERS: Richard Kron Suzanne Gurton Daniel Reichart Sue Ann Heatherly
resource evaluation Media and Technology
In 2010 EarthSky Communications Inc. was awarded a broad implementation grant from the National Science Foundation (NSF) entitled Proyecto de Implementacion Amplia EarthSky en Español (EarthSky in Spanish Broad Implementation Project). In partnership with the Spanish media company Univision Communications Inc. and a national Advisory Committee of Hispanic scientists, educators, and media experts, EarthSky proposed to present science information and scientist interviews to Spanish-preferring U.S. Hispanics via short video programs distributed on television and the Internet. Under the Broad
DATE:
TEAM MEMBERS: Knight Williams Inc. Valerie Knight-Williams Deborah Byrd Rachel Teel Divan Williams Roxana Hernandez Eric Anderson Gabriel Simmons Sauleh Rahbari
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington DC. It describes the CLUES project that provides STEM education opportunities to families.
DATE:
TEAM MEMBERS: New Jersey Academy for Aquatic Sciences Barbara Kelly
resource project Media and Technology
SciGirls and Citizen Science: Real Data, Real Kids, Real Discoveries SciGirls is showcasing Citizen Science! From their own backyards to a NASA research center, the bright, relatable, real girls featured on the groundbreaking PBS series are seriously into science, technology, engineering and math, or STEM. And Season Three of SciGirls finds these STEM adventurers tracking toads, counting clouds and much more, all in the name of citizen science. The brand-new season of the Emmy-winning show, featuring six stand-out episodes, debuted April 2015 on PBS KIDS (check local listings) and online at http://pbskids.org/scigirls. Citizen science is the newest STEM frontier that engages the general public –and kids – in real science. Scientists worldwide invite ordinary people—like the SciGirls—to observe and record data about everything from birds to beaches, monarch butterflies to maple trees. The data is then shared with scientists, who use it to generate new scientific knowledge. In six exciting new episodes, middle school girls and their female STEM professional mentors hit the great outdoors, cataloging frog calls, tracking the changing seasons, verifying satellite imagery of clouds, monitoring fragile butterfly populations, improving urban bird habitats, and advocating for healthy oceans. In addition, animated characters Izzie and Jake are back and finding themselves in sticky situations that can only be solved by STEM—and the SciGirls. When the SciGirls share their data with professional scientists, they save the day for Izzie and Jake and help save the environment! The new mobile-friendly website at http://pbskids.org/scigirls lets kids play new games, watch episodes and videos, and connect with fellow STEM explorers anywhere, anytime. “Collaboration is the key to successful citizen science,” said SciGirls executive producer Richard Hudson. “Since SciGirls’ beginning, working together—making discoveries, mistakes and friends—is one of the important research-based methods we use to engage girls around STEM. This new season underscores the importance of collaboration within the scientific research community and workforce. SciGirls is fortunate to have powerful partners advising us about citizen science, including the Cornell Lab of Ornithology, NASA and SciStarter.” The SciGirls creative team is headed by Twin Cities Public Television’s Director of Science Content Richard Hudson, Executive Producer of the long-running PBS children’s science series Newton's Apple and creator of DragonflyTV and the SciGirls initiative. Animation is created by Soup2Nuts, producers of PBS’ WordGirl. Strategic partners for the new series are the Cornell Lab of Ornithology, Rick Bonney co-PI, and the National Girls Collaborative Project, co-PI Karen Peterson. SciGirls is made possible by a major grant from the National Science Foundation. Additional funding is provided by INFOR, Northrop Grumman Foundation, and PPG Industries Foundation.
DATE: -
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Media and Technology
This project is making enhancements to two existing websites, the Black Hole Encyclopedia and the Spanish version Enciclopedia de Agujeros Negros. The original websites were created by the PI under his NSF CAREER grant. The enhancements include 20 additional black holes in the Directory section, new listings in the Popular Culture section, profiles of six leading black hole researchers (including the PI), audio podcasts, a new section on the history of black hole research, and extensive graphics and animations. The evaluation of the website is expected to add to the informal science education community's knowledge of how the internet is being used to support science learning.
DATE: -
TEAM MEMBERS: Karl Gebhardt Sandra Preston
resource evaluation Media and Technology
In August 2009, the Program Evaluation and Research Group (PERG) at Lesley University contracted with the project's PI at the University of New Hampshire (UNH) to evaluate My Dome: Defining the Computational and Cognitive Potential of Real Time Interactive Simulations in an Immersive Dome Environment, an NSF funded grant. The project focuses on creating interactive experiences in immersive virtual environments, and builds off previous work the PI and co PIs have done in developing films and immersive experiences in domes and traveling domes. The project includes staff from the Carnegie Museum
DATE:
TEAM MEMBERS: Judah Leblang Elizabeth Osche University of New Hampshire
resource evaluation Public Programs
The Youth Astronomy Apprenticeship (YAA) is a yearlong, out-of-school time initiative that connects urban teenage youth with astronomy as an effective way to promote scientific literacy and overall positive youth development. The program employs the strategies of a traditional apprenticeship model, common in crafts and trades guilds as well as in higher education. During the apprenticeship, youth develop knowledge and skills to create informal science education projects: through these projects they demonstrate their understanding of astronomy and use their communication skills to connect to
DATE:
TEAM MEMBERS: Emma Norland Massachusetts Institute of Technology Susan Foutz Mike Krabill
resource project Media and Technology
MIT Education Arcade, in partnership with the Smithsonian Institution, designed and developed Vanished, an eight-week environmental science game as a new genre called the curated game, a hybrid of museum-going, social networking, and online gaming. Middle school aged participants engaged in Earth systems science to study a range of environmental issues associated with mass extinction. Though the game was structured around a fictional scenario--communication with visitors from the future--it posited a future affected by current environmental issues and conditions, and encouraged participants to apply systems thinking as a means to understand how these current conditions led to environmental disruptions. As part of the game play participants studied, applied, and integrated knowledge and skills from multiple sources, including Earth science, ecology, astronomy, and archaeology, and forensic anthropology. An Advisory Board and contributing scientists were be involved. The project team is currently analyzing data collected from the game to test the hypothesis that the game play would allow youth, ages 11-14, to increase their understanding of the scientific process and increase their motivation to learn more science. This summative evaluation is being conducted by TERC Inc. A Curated Game Handbook will be produced to disseminate project results as a model for new applications of game-based learning. Open source software created as part of the game has been made available, and should enable future developers in informal science education to build directly upon these foundational efforts.
DATE: -
TEAM MEMBERS: Eric Klopfer Conrad Labandeira Scot Osterweil Stephanie Norby
resource project Public Programs
This project will be conducted by a team of investigators from North Carolina State University. The principal investigator proposes to examine the characteristics, motivations, in and out-of-school experiences, informal science activities, and career trajectories of 1000 science hobbyists and "master hobbyists." Master hobbyists are individuals who have developed science expertise and spend considerable free time engaging in science as a leisure activity. Master science hobbyists are found across most areas of science (e.g. birdwatchers, amateur astronomers). This research will determine who these individuals are, their career pathways, how they engage in science activities and what motivates, sustains, and defines their science interests. One of the particular goals of this research is to develop new understandings of how science hobby interests develop for women and underserved minorities. In the proposed research investigators will use the results of interviews and surveys to identify contextual factors that influence the motivational processes that, in turn, influenced choices of careers and contribute to ongoing choices in hobby and citizen science activities. Of interest in this study is how citizen scientists who are also serious hobbyists differ from master science hobbyists. Research on citizen scientists has shown that this group is highly motivated by collective motives (such as a desire to help others and further science), whereas this may not be the case with the master science hobbyist. Two groups will be sampled: a) birdwatchers and b) amateur astronomers. This sampling model will allow investigators to contrast their findings by: 1) those who have selected a science career versus those that did not select a science career, 2) those who participate in citizen science activities and those that do not, and 3) those who are birdwatchers (greater mathematical components) and those who are amateur astronomers (lesser mathematical components). Additional coding and analyses will examine any differences in the evolution of bird watching and astronomy hobbies. The results of this research will be examined in light of existing motivational and sociocultural models of career selection. This research will document differences in the perceived motivational elements that influenced master science hobbyists/citizen scientists to choose a science career or not. The results can inform federal, state, and local policies for supporting youth and adults engaged in free choice learning. Results of this research will inform the design of intervention/recruitment programs and ISE outreach initiatives. Potential audiences include ISE institutions (e.g. museums and science centers), organizations with links to STEM (e.g. scouts, boys/girls clubs) and pre- and college initiatives that seek to influence career choices and life-long science interests. The proposed cross-disciplinary approach will promote new understandings of complex issues related to motivation, retention, career selection, leisure activities, engagement with formal and informal educational environments, gender and ethnicity, communities of practice and changes in interests over time. Members of the advisory board have expertise in assessment and measurement and will work closely with the project team to conduct a detailed examination of methodologies and analyses at all phases of the project.
DATE: -
TEAM MEMBERS: Melissa Jones Thomas Andre