Skip to main content

Community Repository Search Results

resource project Media and Technology
This project develops and examines place-based learning using mobile augmented reality experiences for rural families where museums and science centers are scarce yet where natural resources are rich with outdoor trails, parks, and forestlands. The collaborative research team, with members from rural libraries, outdoor learning centers, learning scientists at Penn State University, and rural communities in Pennsylvania, will develop augmented reality and mobile learning resources for families and children aged from 4 to 12. The goal is to help people see what is not visible in real-time in order to learn about life and earth sciences based on local watersheds, trees, and seasonal cycles that are familiar and relevant to rural communities. To accomplish this goal, the project team will create scientifically meaningful experiences for rural families and children in their out-of-school time through three iterations of research and design. Although there is evidence that augmented reality can support learning, little empirical research has been conducted to determine what makes one type of augmented learning experience more effective than others in outdoor learning spaces. This project will produce research findings on the utility of augmented reality for science learning with families and youths outdoors. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants

Through a four-year design-based research study, researchers will investigate three research questions. (1) How can outdoor learning experiences be enhanced with augmented reality and digital resources in ways that make science more visible and interesting?; (2) How do different forms of augmentations on trails and in gardens support science learning? 3) What social roles do children and parents play in supporting each other's science learning and connections to rural communities? Data collection includes video-recordings of children and families in the outdoors, learning analytics of people's behavior, and interviews with rural families. The project's research design will allow for the development of theory, which supports rural families learning science within and about their communities. At the end of the project, the team will offer generalizable design principles for technologically-enhanced informal learning for outdoor displays, gardens, and trails.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Heather Toomey Zimmerman Susan Land
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This Research in Service to Practice project will study how visual immersion and interactivity in augmented reality (AR) affects visitors' engagement and understanding of science. The research involves creating different versions of an AR exhibit to communicate paleontology research from the La Brea Tar Pits to the general public. Different versions of the exhibit will be compared to learn how design choices for immersion and interactivity impact visitors' engagement and understanding of science. The result of this study should be a model to follow for similar public exhibits, as well as design principles that generalize to AR experiences for a broader range of informal learning environments. This project will also demonstrate and report on specific AR mechanisms that help visitors understand the scientific process and increase knowledge about paleontology research.

The study includes a user-centered design and evaluation process with both formative and comparative studies. This project investigates two high-level design factors for mobile AR: visual immersion and interactivity. These impact the learning experience and the development so extensively that multiple versions are seldom compared. These factors also have unique considerations for informal settings, such as how to balance immersion against situational awareness (e.g., 3D viewers reduce field of view). One goal of this project is to systematically compare qualitatively different AR designs that convey equivalent science content and study these tradeoffs empirically. The second goal is to leverage these findings to publicly release an AR experience that promotes engagement, increases understanding of science, and reduces scientific misconceptions. This research will also contribute to understanding usability and logistical issues for different AR designs for public, outdoor, informal settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Emily Lindsey Benjamin Nye Gale Sinatra William Swartout
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for STEM learning in a variety of settings. Many military veterans who seek to transition to higher education or workforce pathways find it challenging to translate the skills they acquired during service to civilian STEM settings and the modern day workforce. Yet many returning veterans have significant experience with STEM fields, including mapping and geospatial technologies, because of their unique functions and service assignments. Such geospatial skills are useful for location-aware industries, citizen science and public services. At the same time, military and veteran families have been largely overlooked as an important public audience for focused informal STEM learning. Informal learning events called "mapathons" which enlists participants to mapping exercises and create geospatial data on open platforms that address authentic needs in their communities and the broader society at large. When seeking to further their education upon returning from service, veterans' typical options have included some form of formal higher education. Mapathons may be a feasible bridging activity that (a) recognizes veterans' unique, valuable, and in-demand STEM skills and (b) supports lifelong learning.

This pilot research seeks to understand how informal learning experiences such as mapathons are viable pathways for veterans to transition to the civilian workforce. The conceptual approach pays attention to the realities of the life course of military and veteran families, especially building upon theories of change related to transitions to include a spatial component. The foundation of the project's intellectual merit is its explicit inclusion and sensitivity to place, scale, and spatial behavior, building directly from findings of prior NSF-funded projects and the evidence base for informal learning pathways. The research will contribute to knowledge about workforce development by addressing the questions: (1) To what extent do veterans recognize that their extant skills acquired, in military settings, are translatable to civilian STEM settings?; (2) How can informal learning experiences help a diverse veteran population increase awareness of the translatability of geospatial workforce competencies, build confidence in technology skills, and motivate interest to pursue formal studies in STEM fields in general?; and (3) What pathways do which veterans favor when they could pursue formal STEM higher education learning among an array of choices online or at regional sites, and why? The study will engage 320 participants at 8 sites across Texas; employ in-depth surveys and interviews; and use spatial analysis to elicit insights about the research questions.

Military and veteran families include a significant number of people from group typically underrepresented in STEM fields. Supporting more veterans to transition successfully to higher education pathways or careers in STEM is a vital service to the nation. This study on informal to formal pathways for veterans will include an innovative understanding of the importance of place in meaning-making and in the reality of choices they consider during the transitions of their life course.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Patricia Solis Melanie Hart Dennis Patterson
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This RAPID project was submitted in response to the NSF Dear Colleague letter (NSF 17-128) related to Hurricane Harvey along the Gulf Coast. The PBS NewsHour team will produce 9 stories for national distribution using multiple broadcast and online channels that will engage the public and increase their understanding of the science and engineering research being conducted to better predict and mitigate the impact of future storms. Hurricane Harvey was the first of several storms in 2017 that hit first Texas then Florida and the Caribbean creating unprecedented devastation. This project aims to help the public better understand the science behind storms, and how scientists and engineers are actively collecting data, developing new models, using new technologies, and studying the environmental recovery. The PBS NewsHour team has in place experienced science journalists, production facilities, and a distribution network that can quickly develop media stories based on the work of scientists and engineers in the field, many of whom are funded by NSF. The NewsHour has a strong track record of telling stories that are scientifically accurate yet highly engaging and understandable to a diverse audience. Researchers from several universities including Texas A&M, Rice University, and Norfolk State University are advising the NewsHour team and may also be featured in some of the media. The team will also use their existing collaboration with education researchers at New Knowledge, Inc. to seek audience feedback on proposed/produced media.

The potential audience reach of these stories is extensive. Stories that are broadcast on the nightly PBS NewsHour reach 1.6 million people. The NewsHour's website currently reaches 6 million while their YouTube channel has 40 million views. They have a growing audience of younger viewers who mainly get their news on social media channels such as ScienceScope and Apple News. EXTRA is another service offered just for teachers.
DATE: -
TEAM MEMBERS: Patti Parson
resource research Public Programs
We propose a thoughtful process for scientists to develop their “impact identity”, a concept that integrates scholarship in a scientific discipline with societal needs, personal preferences, capacities and skills, and one’s institutional context. Approaching broader impacts from a place of integrated identity can support cascading impacts that develop over the course of a career. We argue identity is a productive driver that can improve outcomes for scientists and for society. Widespread adoption of the concept of impact identity may also have implications for the recruitment and retention of
DATE:
resource research Public Programs
The art/science nexus has historically been approached through a challenge of aesthetics versus mathematics, and processes of knowledge production. Notably absent in this debate are the social sciences that explore human experience and perception. In particular, what has not been addressed clearly in the literature is how reasoning about the human experience can be provoked when people encounter content that does not assert itself as neatly defined in either an art or science discourse. By reflecting on one case study of a public art/science installation, we explore new fields of knowledge
DATE:
TEAM MEMBERS: John Fraser Fiona MacDonald Nezam Ardalan
resource evaluation Public Programs
This document contains the following Appendices that provide information for the I/CaLL Community Science Learning study. Appendix A: StreamLines Events Appendix B: StreamLines Events Survey Instrument Appendix C: Art + Science Brainstorm Coding Themes Appendix D: Art + Science Brainstorm Flyer
DATE:
TEAM MEMBERS: John Fraser Nezam Ardalan
resource research Public Programs
I/CaLL is a four-year project that explores art as conduits for informal science learning on a citywide scale. The project attempts to transform the city of Indianapolis into an informal science-learning museum through the use of sculpture, dance, music, and poetry as educational tools in creating awareness and understanding of the city’s waterways. Specifically, I/CaLL addresses five sites located near and around waterways in impoverished or underserved communities, where art interventions created by artists in collaboration with scientists address topics around water sustainability
DATE:
TEAM MEMBERS: John Fraser Nezam Ardalan Christina Shane-Simpson
resource evaluation Public Programs
This set of appendices represent all research instruments related to study presented in the I/CaLL Art Experiences and Advancing Science Literacy report (NewKnowledge Publication #NSF.097.115.07). Appendix A: Installation Site Intercept Interview Instrument Appendix B: Artists-Scientists Walk & Talks Instrument Appendix C: Post-Performance Event Survey Instrument Note that researchers did not use an instrument for the fourth aspect of the study, the post-performance event reflection sessions. Instead, they allowed the discussions to be directed by the reflection participants.
DATE:
TEAM MEMBERS: John Fraser Rebecca Joy Norlander Sophie Swanson Nezam Ardalan Kate Flinner Joanna Laursen Brucker Nicole LaMarca
resource evaluation Public Programs
A mixed-methods series of surveys were used to explore public literacy related to environmental science and sustainability in Indianapolis. Surveys also explored predictive variables including environmental identity, nature affinity, use of nature places as learning opportunities, and motivations for visiting nature spaces. An online, citywide consumer survey was distributed alongside a parallel identical survey of employees at a major science-based corporation to assess variation in knowledge, attitudes, and learning behaviors. This science-based corporation provides substantial support to
DATE:
TEAM MEMBERS: John Fraser Su-Jen Roberts Nezam Ardalan
resource research Public Programs
This report describes the results from an exploratory study of how artists approached collaboration with earth scientists to foster the public’s science learning and engagement with a city’s waterways. Data from phone interviews, surveys, and reflection on the artwork produced for this collaboration were compared with observations of roundtable discussions with community-based artists and scientists grappling with these ideas in a dialogue format. The researchers found that personal connections with the waterway sites and professional interest in and experience with art–science
DATE:
TEAM MEMBERS: John Fraser Nezam Ardalan Kate Flinner Su-Jen Roberts
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The uses of technologies in emergency management and public safety are emerging rapidly, but it could take years for school STEM curricula to catch up with the technologies that are already being deployed in the field. Informal learning environments, such as Teen Science Cafés, provide a compelling venue for youth learning about rapidly-developing STEM fields such as technology. The floods and devastation caused by Hurricane Harvey provide a timely learning opportunity for them. This project, in addition to developing new materials for learning about technologies, will provide much-needed baseline research on teens' understanding of technology, technology careers, and emergency preparedness. Leveraging the robust platform of the NSF-funded Teen Science Café, the Maine Mathematics and Science Alliance will build upon its existing partnership with Science Education Solutions to develop and implement a package of educational activities, tools, and resources for a Teen Science Café that is focused on community flood events and response, using Hurricane Harvey as a model and case study. The materials will focus on advances in sensor technology, data visualization, social media, and other mobile communication apps used to detect, monitor and respond to flooding and natural disasters. The package of materials will be embraced by 20 sites in Maine. The goal is to engage at least 600 youth in themed Cafés focusing on how technology was used to respond to Harvey and is being used to manage and respond to flooding more generally. An important related goal is to conduct baseline research on what teens currently know about the flood-related technologies, as well as what they learn about it from this experience derived from recent floods in Texas, Florida, and the Caribbean islands.

A research goal of our work was to collect baseline information on teens’ level of knowledge about the role of technology in responding to a variety of natural disasters. To our knowledge, the field has not developed measures of knowledge of this increasingly important domain. We developed a quick and easy-to-administer 10-item multiple-choice measure, which we presented as a “trivia game” to be done sometime during the 90-minute Café. We did not track pre- to post-café changes in knowledge, because the Cafés emphasized very different pieces of technology as well as different types of natural disasters. Rather, we wished to establish a starting point, so that other researchers who are engaged in ERT efforts with teens have both an instrument and baseline data to use in their work.

A sample of 170 youth completed the questionnaire. The average correct response rate was 4.2 out of 10, only slightly higher than the chance of guessing correctly (3 out of 10). This suggests teens have limited baseline knowledge of Emergency Response Technology and our Cafés therefore served an important purpose given this lack of knowledge. Indeed, for half of the questions at least one incorrect answer was selected more often than the correct answer! Note that there were no statistically significant correlations between age and gender and rates of correct answers.

Three things are clear from our work: 1) Youth need and want to know about the vital roles they can play by learning to use technology in the face of natural disasters; 2) Teens currently know little about the uses of technology in mitigating or responding to disasters; and 3) Teen Science Cafés provide a timely and relatively simple way of sparking interest in this topic. The project showed that it is possible to empower youth to become involved, shape their futures, and care for their communities in the face of disasters. We plan to continue to expand the theme of Emergency Response Technology within the Teen Science Café Network. Reaching teens with proactive messages about their own agency in natural disasters is imperative and attainable through Teen Science Cafés.
DATE: -
TEAM MEMBERS: Jan Mokros